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1 Introduction

The wavelet tree is a flexible data structure with numerous applications in text indexing,
data compression and other areas [9, 23]. Ever since being introduced as a full-text index
by Grossi et al. [13], there have been myriad approaches on improving the time and space
requirements for its construction [6, 7, 14, 22, 34] as well as transforming it for faster
practical querying (e.g., the wavelet matrix [5]).

Related work and motivation. In recent work, quite some focus has been laid on the
parallel construction of wavelet trees in multi-core scenarios with shared memory [10, 19,
29, 30, 31, 32]. However, all existing construction algorithms share a common limitation:
albeit being able to use multiple cores, they are bound to work on a single machine and
hence are limited by that machine’s hardware. While the amount of data being processed
is typically becoming larger (big data), Moore’s Law is nearing its physical boundaries [33]
and the computational power that a single machine can achieve is limited.

This development leads to the idea of distributing work across multiple, physically sep-
arate machines that communicate over a network. For this scenario, a different view on
algorithms is required that is commonly referred to as distributed computing. Thus far, no
distributed algorithm for the construction of wavelet trees has been presented yet.

Goals and challenges. The main goal of this thesis is to develop, analyze, implement and
practically evaluate the first distributed algorithms for the construction of wavelet trees.
The practical evaluation shall be conducted on large inputs in the order of tens to hundreds
of gigabytes to demonstrate the practical use of distributed computing.

The key challenge is the fact that, unlike in sequential or shared memory scenarios,
randomly accessing parts of the input or the data structure during its construction is not
feasible. Typically, in distributed computing, each processing element has a view on only a
slice of the input and merely constructs a local part of the global data structure. In order
to exchange information with other processing elements, e.g., in order to merge partial
results into a final result, this information needs to be communicated. Communication,
however, may be expensive — due to limited bandwidth of the network for example,
but also because the mere transmission and reception of messages causes computational
overhead in itself. Therefore, the amount of communicated data becomes a key measure
for the overall performance of a distributed algorithm.
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1 Introduction

Thrill and MPI. The distributed wavelet tree construction algorithms developed in this
thesis were originally to be implemented using the Thrill framework [3] only. We extended
this goal by implementations against the message-passing interface (MPI) [21] for two
reasons: on one hand, the implementations in Thrill were surprisingly easy to realize thanks
to its high-level interface design. On the other hand, because of the high abstraction level,
some ideas could not be implemented using Thrill.

Structure. In chapter 2, following some basic definitions required throughout the thesis,
we take a close look at wavelet trees and their construction in sequential as well as parallel,
shared memory computing. We then introduce the basic concepts and caveats of distributed
computing and a computation model for the analysis of distributed algorithms and take a
look at the features that MPI and Thrill provide to implement these algorithms.
In the main part of the thesis, we develop and analyze algorithms for the distributed

construction of wavelet trees (chapter 3), document their implementation (chapter 4) and
perform a practical evaluation (chapter 5).

Wavelet tree vs. wavelet matrix construction. In chapter 6, we additionally deal with
a theoretical problem concerning wavelet trees and wavelet matrices that is not directly
related to distributed computing. In said chapter, we continue the research of Fischer
et al. [10] on whether construction algorithms for the wavelet tree can be used to construct
instead the wavelet matrix and vice versa without worsening the asymptotic time and space
boundaries. This was an optional goal of this thesis that has been reached, albeit with
limitations.
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2 Preliminaries

In this chapter, we define the basic terms, data structures and algorithms on which this
thesis is based. Furthermore, we describe the Thrill framework and MPI, which we use for
the implementations presented in chapter 4.

2.1 Basic Definitions

Let T ∈ Σn be a text over an alphabet Σ and let i, j ∈ [0, n). We denote the i-th symbol of
T by T [i], and by T [i . . . j] we denote the substring of T starting at position i and ending
after position j. For a symbol c ∈ Σ, we denote by occT (c) the number of occurrences of c
in T . The histogram H : c 7→ occT (c) maps each symbol to the number of its occurrences.
A bit vector is a text over the binary alphabet B = {0, 1}.

Notation. Array indices are zero-based, i.e., the first item of an array A of length n is
denoted by A[0] and the last by A[n − 1]. In algorithm listings, we use common bitwise
operators as listed in Table 1.

Symbol Operator Example

� Bitwise shift to the left 001b � 2 = 100b
� Bitwise shift to the right 100b � 2 = 001b
or Bitwise OR 100b or 001b = 101b
and Bitwise AND 100b or 101b = 100b

Table 1: Bitwise operators used in algorithm listings.

In the context of binary trees, we refer to nodes using their BFS rank, i.e., their zero-
based rank in a breadth-first traversal of the tree. To that end, the root node has BFS
rank 0 and given a node v, the left child has BFS rank 2(v+ 1)− 1 and the right child has
BFS rank 2(v + 1).

2.1.1 Effective Transformation

The effective alphabet of T is the set of those symbols c ∈ Σ with occT (c) > 0. We denote
its size by σ and represent it as the interval [0, σ), where the lexicographically smallest
symbol is represented by 0, the second smallest by 1 and so forth, until the lexicographically
largest symbol, which is represented by σ − 1.

3



2 Preliminaries

We define the effective transformation Teff of T as follows: for an i ∈ [0, n), let k be the
lexicographic rank of the symbol at T [i], i.e., it is the lexicographically k-smallest symbol
in the effective alphabet. Then Teff[i] := k.

To give an example, let T = effective. The underlying alphabet is Σ = {c, e, f, i, t, v}
and consists of σ = 6 distinct symbol, i.e., we can represent it as the effective alphabet
[0, 6). Mapping each symbol of Σ to its lexicographic rank (c 7→ 0, e 7→ 1, etc.), we receive
the effective transformation Teff = 1 2 2 1 0 4 3 5 1.

2.1.2 Operations on Sequences

A tuple (a0, . . . , an−1) ∈ An over a base set A can be viewed as a sequence of n elements
from A ordered by their indices i ∈ [0, n). In Table 2, we define several operations on
sequences that are used throughout this thesis.

Operation / Signature Description

Concat
An ×Am → An+m

Concatenates two input sequences to form a new sequence,
retaining the order of the items.

Filter
An × (A→ B)→ Am

Filters those m elements from the input sequence on which
the given predicate function p : A → B yields p(a) = 1 and
places them (in input order) into the output sequence.

Map
An × (A→ B)→ Bn

Applies the mapping function m : A → B on each item
from the input sequence in order and returns the sequence
(m(a0), . . . ,m(an−1)).

PrefixSum
An × N× (A→ N)→ N

Given a key mapping k : A → N, computes the sum
m−1∑
i=0

k(ai) of the keys of the first m ≤ n items (prefix) of

the sequence.

Sort
An × (A×A→ B)→ An

Sorts the input sequence according to the given comparison
function, which, for any two a1, a2 ∈ A, returns 1 if a1 is
strictly less than a2 in the corresponding order and 0 other-
wise.

SortStable
An × (A×A→ B)→ An

Sorts the input sequence, retaining the relative order of el-
ements that are equal in terms of the comparison function.
Thus, the sorting is stable.

Zip
An ×Bn × (A×B → C)→ Cn

Combines two sequences into a new sequence by applying the
zipping function z : A × B → C pairwise on two elements
from the respective input sequences in their order, i.e., it
computes the sequence (z(a0, b0), . . . , z(an−1, bn−1)). This
requires the input sequences to be of the same size.

Table 2: Operations on sequences used in this thesis.

4



2.2 Wavelet Trees

wavelettree

10100011000

aeleree

0010100

aeeee

01111
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wvtt

1000

vtt
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Figure 1: The wavelet tree for the input text T = wavelettree. The texts above the bit vectors
are shown only for comprehensibility; they are not a part of the node labels and are not
stored. The last level of the wavelet tree would consist solely of leaves and is therefore
omitted. Even though the node for w is also a leaf, we keep it so the number of bits
on each level equals the input length n, a property that we are going to use at various
points in the thesis.

2.1.3 Rank and Select on Bit Vectors

Let B ∈ Bn be a bit vector of length n. For an i ∈ [0, n), the operation rank1(B, i)

computes the amount of 1-bits contained in the substring B[0, i]. Correspondingly, for any
k ∈ [1, occ(T, 1)], the operation select1(B, k) computes the position i of the k-th occurrence
of a 1-bit in B. We define rank0(B, i) and select0(B, k) analogously.

If B is static, we can construct a data structure that answers rank and select queries on
B in constant time and requires o(n) bits of additional space [25].

2.2 Wavelet Trees

For a text T ∈ Σn, the wavelet tree is a binary tree of height dlog σe, where σ is the size of
the effective alphabet of T . Each node v represents an interval [a, b] ⊆ [0, σ) of the effective
alphabet and contains a bit vector Bv ∈ B∗, which has one bit for those text positions i,
in text order, with T [i] ∈ [a, b]: a 0-bit if Teff[i] ≤ ba+b

2 c, i.e., if the symbol T [i] lies in the
left half of the alphabet interval, and analogously a 1-bit otherwise.

The root node represents the entire effective alphabet [0, σ). Therefore, its bit vector
has length n, because every symbol in T in contained in the effective alphabet. A node v
has two children iff a < b. We apply the described structure recursively for the left child to
represent [a, ba+b

2 c] (the left half ) and the right child to represent [ba+b
2 c+ 1, b] (the right

half ). Following that, the tree’s leaves are those nodes that represent an interval of size
one, i.e., precisely one symbol from the input alphabet (a = b). Since a leaf’s bit vector
contains only zero-bits, it needs not be stored. Figure 1 shows an example for a wavelet
tree.

5



2 Preliminaries

Bounds. The number of nodes in the wavelet tree is bounded by σ: if σ is a power of two,
the wavelet tree is a full binary tree of height log σ, i.e., then it has precisely 2log σ−1 = σ−1

nodes. If σ is not a power of two, the number of nodes is less than σ − 1.

The concatenation of all bit vectors on any level of the wavelet tree amounts to at most
n bits. Therefore, because the tree has height dlog σe, the bit vectors consume at most
ndlog σe bits in total.

Queries. The wavelet tree provides the means to answer rank and select queries on T

for any symbol c ∈ [0, σ) as well as access queries on T in time O(log σ) [24, Ch. 6.2]. In
this way, it can be viewn as an alternative representation of T . In order to achieve these
query times, each bit vector is prepared for constant-time rank and select queries, which
requires o(n) bits of additional space for each level (see section 2.1.3). However, because
this thesis focuses on the construction of the wavelet tree, we do not go into any further
detail concerning these queries.

Path encoding. An important property that we use for construction is that the bits in
the dlog σe-bit binary representation of a symbol c ∈ [0, σ) encode the path in the wavelet
tree that leads from the root to the leaf that represents c. This means that for a 0-bit, we
go on to the left child of the current node and for a 1-bit, we go to the right child. More
generally, the `-bit prefix of said representation of c leads to the corresponding node on
level ` [29].

2.2.1 Wavelet Trees and the C Array

Let the array C contain, for each symbol c ∈ [0, σ), the accumulated number of occur-
rences of the symbols in Teff that are lexicographically smaller than c, that is: C[c] :=
c−1∑
x=0

occTeff(x). Table 3 shows an example. By definition, we have C[0] = 0. Furthermore,

we define C[σ] := n (the length of the text). C can easily be computed in time O(σ) using
the text’s histogram and occupies σdlog ne bits of space.

Computing node sizes. Using the C array, we can predict the size |Bv| of any node v in
the wavelet tree, i.e., the length of its bit vector. Let [a, b] ⊆ [0, σ) be the alphabet interval
represented by v. Then, |Bv| = C[b+ 1]− C[a].

a e l r t v w
c 0 1 2 3 4 5 6

occT (c) 1 4 1 1 2 1 1
C[c] 0 1 5 6 7 9 10 11

Table 3: The histogram and the C array for T = wavelettree.
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2.2 Wavelet Trees

2.2.2 Storage

There two common ways to store the wavelet tree: the levelwise and the pointer-based
representation.

Levelwise. In the levelwise representation, the bit vectors of all nodes on the same level
are concatenated to bit vectors of length n and prepared for constant-time rank and select
queries. Note that in order to prevent gaps, we also store bit vectors of leaves in case there
are any inner nodes on the same level (as the leaf for w in Figure 1).

The amount of 0-bits in a node’s bit vector on level ` equals precisely the offset at which
the first bit of the right child’s label on level `+ 1 is located. Due to this fact, navigation
in the wavelet tree can be simulated using a combination of rank and select queries (see
[24, Ch. 6.2] for details). Since the constant-time rank and select data structures occupy
o(n) bits per level, the levelwise wavelet tree can be stored using ndlog σe+ o(n) · dlog σe
bits.

Pointer-based. In the more explicit pointer-based representation, each node stores point-
ers to its two children. This allows for faster navigation in the tree, because it saves rank
and select queries to determine node boundaries within the bit vectors. However, this
comes at the cost of O(log n) additional bits required per pointer. Since the wavelet tree
has at most 2dlog σe−1 = O(σ) nodes, this amounts to O(σ log n)+ndlog σe+o(n) · dlog σe
bits for the node-based wavelet tree. Note that constant-time rank and select support is
still required on each bit vector in order to answer queries such as rank and select using
the wavelet tree.

2.2.3 Sequential Construction

Navarro [24, section 6.2.3] presents a very straightforward algorithm for the sequential
construction of the wavelet tree in its node-based representation, which is listed as Algo-
rithm 1 (simpleWT ). Given text T of length n over the alphabet interval [a, b] ⊆ [0, σ),
we compute the wavelet tree with root node v as follows: first, we find the number z of
symbols that belong to the left half of [a, b] (line 6). We then scan over T from left to right
and construct the string T 0 of length z and the string T 1 of length n − z. These strings
correspond to the texts displayed in Figure 1. For each symbol c in T , we test whether c
belongs to the left half of [a, b] and if this is the case, write a 0-bit into Bv and append c to
T 0 (line 13). Otherwise, if c belongs to the right half, write a 1-bit to Bv and append c to
T 1 (line 17). Now, T is no longer needed and can be discarded. We construct the wavelet
subtrees of the left and right child of v recursively using T 0 and T 1.

We invoke simpleWT for the root node v = 0 and the entire effective alphabet [a, b] =

[0, σ) to construct the full wavelet tree for an input T .

7



2 Preliminaries

Algorithm 1: simpleWT – sequentially constructs the wavelet tree in its node-based
representation.
Input : node BFS rank v ∈ N, interval [a, b] ⊆ [0, σ), text T ∈ [a, b]n

Output: bit vectors Bu : B∗ for each node u in the subtree of v
1 Function simpleWT(v, a, b, T )
2 if a = b then
3 return ε // leaf

4 m := ba+b
2 c

5 z := 0
// precompute size of T 0 and T 1

6 for i = 0 to n− 1 do
7 if T [i] ≤ m then
8 z++

9 allocate T 0 ∈ [a,m]z and T 1 ∈ [m+ 1, b]n−z

10 z := 0
11 for i = 0 to n− 1 do
12 if T [i] ≤ m then

// T [i] is in the left half
13 Bv[i] := 0
14 T 0[i] := T [i]
15 z++

16 else
// T [i] is in the right half

17 Bv[i] := 0
18 T 1[i− z] := T [i]

19 free T
20 simpleWT (2(v + 1)− 1, a, m, T 0) // recursively construct left child
21 simpleWT (2(v + 1), m+ 1, b, T 1) // recursively construct right child
22 return (Bv, B2(v+1)−1, B2(v+1), . . . )

The algorithm requires total time O(n log σ), because we scan a total of n symbols on
each of the dlog σe levels. We need O(n log σ) bits of space to store the temporary strings
T 0 and T 1.

Various advancements have been made in the field of sequential wavelet tree construction.
Munro et al. [22] show that the wavelet tree can be constructed in time O(nd log σ√

logn
e)

by first constructing an L-ary wavelet tree (with L = 2
√

logn) and then converting it
to a binary tree. Claude et al. [6] give an algorithm that constructs the wavelet tree
using only O(log n log σ) bits of additional space by permuting truncated representations
of the symbols of the input text. Furthermore, they develop an in-place variant of that
algorithm that replaces the input text and uses n + O(log n log σ) bits of extra space.
Finally, da Fonseca and da Silva [7] show how to construct the wavelet tree online, i.e.,
without prior knowledge of the input text and alphabet.

8



2.3 Distributed Computing

2.2.4 Parallel Construction

In recent years, there has been quite some research on the parallel construction of wavelet
trees in multi-core, shared memory settings [10, 19, 29, 30, 31, 32]. In this section, we
briefly summarize the practically most relevant strategies employed by the algorithms
presented thus far. We describe in greater detail in chapter 3, where we adopt them for
our distributed algorithms.

Domain decomposition. Sepúlveda et al. [29] present an easily conceivable idea to effi-
ciently distribute work across the available processors. Using the domain decomposition
approach, the input text is partitioned and each processor locally computes the entire
wavelet tree for one part of the text using any sequential algorithm (e.g., Algorithm 1). In
order to retrieve the wavelet tree for the full text, the partial wavelet trees are merged node
by node by concatenating their bit vectors from left to right in the order of the processor
ranks.

Recursive with parallel split. The algorithm recursiveWT [19] due to Labeit et al. con-
structs the wavelet tree recursively in a way similar to Algorithm 1. The input text is
partitioned and processed in parallel using p processors to construct the bit vector. The
computation of T 0 for recursing on the left subtree and T 1 for the right subtree is done
with thea parallel split operation using the previously constructed bit vector. Then, p

2

processors recurse to construct the left and right subtree for T 0 and T 1, respectively.

Stable sorting. While the domain decomposition and recursive strategies construct the
wavelet tree with focus on the nodes, the algorithm sortWT first proposed by Shun [31]
and later improved by Fischer et al. [10] constructs each level as a whole. The bit vector
is computed as in simpleWT (Algorithm 1) from the current text of length n in parallel
(e.g., the input text for the first level). After constructing level `, we stably sort the text
by the (` + 1)-bit prefixes of its symbols. Because the first ` + 1 bits of a symbol encode
the first `+ 1 steps in the wavelet tree towards its leaf and we already constructed ` levels,
the sorted text corresponds to the order of bits on the following level.

2.3 Distributed Computing

Distributed computing requires an extended view on algorithms in terms of performance
evaluation compared to the classical sequential computing models. In sequential comput-
ing, a single processing element executes an algorithm in order to compute a result. Using
Flynn’s taxonomy [11], this corresponds to the Single Instruction Stream – Single Data
Stream (SISD) model. We evaluate SISD algorithms according the number of steps it re-

9



2 Preliminaries

P0

P1

P2

Pp−1

t

Figure 2: Distributed computation of processing element P0 to Pp−1 over time t in the BSP model.
The bars represent the local computations of the processing elements, the dashed arrows
represent their communication. The thick vertical lines mark synchronization barriers
(including the start of the distributed algorithm) and thus separate the computation
into supersteps.

quires to get to said result (running time), as well as how much memory (RAM) needs to
be allocated for its temporary storage of data during computation.

In contrast, distributed computing means that multiple processing elements, aware of one
another, work together to compute a cohesive result. These processing elements, however,
may be physically separate machines, connected only via a medium of communication (e.g.,
ethernet or InfiniBand). There is no concept of shared memory, so a processing element
P1 cannot see what another processing element P2 is doing unless P2 tells it, i.e., unless
communication takes place in the form of messages being sent from P2 to P1 over the
medium.

Each processing element may execute the same or different local algorithms. Without
any communication, they work in a completely isolated manner and thus independently of
the other processing elements. This corresponds to Flynn’s Multiple Instruction Stream –
Multiple Data Stream (MIMD) model [11]. The combination of the local algorithms and
communication with the goal of computing a cohesive result, however, form a distributed
algorithm (see also [20]).

Communication may be expensive due to a myriad of reasons (e.g., due to limited
bandwidth on the medium) and naturally causes computational overhead. Therefore, the
amount of communicated information is a key measure in the analysis of distributed algo-
rithms.

2.3.1 The Bulk Synchronous Parallel Model

This notion is implemented in the bulk-synchronous parallel (BSP) model introduced by
Valiant [35]. In the BSP model, a distributed algorithm is thought to be separated in so-
called supersteps, each of which consists of three phases: local computation, communication
and barrier synchronization. This is visualized in Figure 2.

10
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Local computation. The first phase corresponds to the aforementioned local algorithms
that each processing element executes independently. Eventually, the execution arrives
at a point where either communication is necessary in order to continue, or the result
needs to be communicated in order to form the cohesive result. The duration of the local
computation may differ for each processing element — be it because of different hardware,
different algorithms being executed, different parts of the input being processed or simply
statistical fluctuations.

Communication. The second phase is an abstraction from the fact that any processing
element may dispatch messages at any point during its local computation. To this end,
we imagine that all messages from all processing elements are dispatched simultaneously
after all local computation is done.

Barrier synchronization. In order for the messages to be processed by their recipients, a
synchronization needs to take place. This can be thought of the point in time where the last
message sent during the communication phase has traversed the communication medium
and arrived at its destination. In the BSP model, this is considered a barrier because
only at this point, processing elements may continue with local computation, processing
the received messages. The synchronization concludes a superstep; any local computation
processing the received messages belong to the next superstep.

Cost analysis. We define the BSP costs of a distributed algorithm to reflect the com-
plexity of the three phases. Let n be the size of the input. The BSP costs of an al-
gorithm consist of (1) the maximum (worst-case) number W (n) of local work steps that
processing elements are required to perform, (2) the number H(n) of words sent over the
communication medium during the distributed computation and (3) the number S(n) of
synchronization barriers that occur during the computation.

To express the number of words sent, we define three types of word lengths that depend
on the underlying computer and network architecture:

1. the length wN of one integer — e.g., wN = 8 bytes for 64-bit integers,
2. the length wΣ of one symbol — e.g., wΣ = 1 byte in ASCII encoding,
3. the length wB of one bit1 — which, for example, we could substitute by 1

8 to express
the number of bytes being sent.

To give an example, when a processing element sends a message containing m integers, we
write m · wN words. We assume all three word lengths to be in O(1).

1Note that in common network architectures, it is not possible to send messages consisting of single
bits. Instead, multiple bits are packed into bytes or other types of network payloads. However, some
algorithms that we analyze in this thesis send ranges of bit vectors and we use wB in order to distinguish
from other word types.
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2.3.2 MPI

Message passing is a paradigm commonly followed in the development of distributed al-
gorithms and constitutes the means of how communication between different processing
elements is achieved: by sending and receiving messages over a communication medium,
which is assumed to be reliable (i.e., the user / programmer does not need to cope with
communication failures).

The Message-Passing Interface (MPI) establishes a standard for writing message pass-
ing programs with the goal of defining an application programming interface allowing for
efficient, thread-safe communication and implementations portable to heterogeneous en-
vironments [21]. While the semantics of MPI operations are language independent, the
standard was introduced with C and Fortran bindings in mind.

An established open-source implementation of MPI is Open MPI [12]. For our practical
evaluation, we use the Intel MPI Library2, which is optimized for Intel clusters.

Communicators. A key concept of MPI is the communicator, which can roughly be un-
derstood as a group of workers executing a distributed algorithm and are allowed to send
and receive messages from one another. To address a worker, its rank within the respective
communicator is used.

Message passing operations. Message passing is done using the straightforwardly named
operations Send and Recv, which causes the executing worker to send a message to a certain
worker or receive one, respectively. The Probe operation allows to test for an incoming
message and check it before actually receiving it, e.g., in order to allocate a buffer for it to
be stored. Alternatively, its reception may be canceled altogether.

The Send, Recv and Probe operations come in two major variants: blocking and non-
blocking. A blocking Send will block the execution flow of the sending worker until the
recipient receives the message and vice versa, a blocking Recv will block until a matching
message is sent by another worker. The non-blocking variants, on the other hand, can be
thought of as asynchronous operations, immediately returning the execution flow.

Collective operations. MPI defines several collective operations, which involve all workers
of a communicator. The Barrier operation, for example, resembles an explicit barrier
synchronization according to the BSP model: the local execution is halted until all workers
(of the corresponding communicator) reach the synchronization point.

2Intel MPI Library: https://software.intel.com/en-us/mpi-library
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2.3.3 Thrill

Thrill is a general purpose framework for distributed processing of big data, setting the
focus on data flow as opposed to message passing [2, 3]. It can be compared to the
well-known frameworks Apache Spark [36] and Apache Flink [4] in that it is a high-level
framework for processing data streams. In contrast to those frameworks, however, Thrill
is (1) based on C++, which allows for native machine code optimized for the executing
hardware and a much more fine-grained control over memory allocations as opposed to
frameworks based on the Java Virtual Machine, and (2) its main data structure is an array
rather than a multiset, which allows operations such as sorting, prefix summing and zipping
to be implemented in the framework. Thrill outperforms both Apache Spark and Apache
Flink in common benchmarks in terms of total running time and network throughput [3].

Distributed Immutable Arrays. The primary data structure of Thrill is the Distributed
Immutable Array (DIA). It constitutes the notion of the data being processed to exist in an
array that is distributed over any set of workers in the network. This data may be of any
serializable type: primitives such as integers, tuples or complex user-defined structures.
Thrill makes it transparent to the user where any part of the data is currently stored or
even whether it currently exists at all — Thrill makes use of lazy evaluation wherever
possible. Independent of these factors, DIAs allow the distributed data to be thought of
as a consecutive sequence of items as described in section 2.1.2, which allow for high-level
operations to be defined on them. However, it is important to note that Thrill provides no
means whatsoever to access or modify single items of a DIA. The only way to modify a DIA
is by performing an operation which transforms it into a new DIA, i.e., the represented
array is immutable.

Building blocks. These DIA operations are the building blocks on which Thrill appli-
cations are based. Among several others, Thrill implements all the operations defined in
Table 2. DIA operations are categorized as either (a) source operations, which initially pro-
duce a DIA to start working with — e.g., read from a file or generate an indexed sequence of
integers, (b) local operations, which are trivial in the sense that no network communication
is required in order to perform them — e.g., the Map operation, which maps items using
a map function, or (c) distributed operations, which do require communication in order to
be executed — e.g., the Sort operation, where only the local sequence can be sorted on
each worker before communication is necessary to sort globally.

2.4 Common Distributed Algorithms

We introduce two problems that commonly occur in distributed computing: prefix summing
and AllReduce. Both MPI and Thrill provide implementations to solve these problems, but
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it is not documented exactly which algorithms they implement. Therefore, we take a look
at known optimal algorithms.

Let p be the number of processing elements and let x = (x0, x1, . . . xp−1) ∈ Xp be
a distributed tuple over some set X. We assume that processing element i — the i-th
processing element in the network with i ∈ [0, p) — only knows the local item xi, but none
of the remote items xj with j 6= i. Let ⊕ be an associative operator over items from X.

2.4.1 Prefix Summing

A frequently required operation in distributed computing is for each processing element i
to find the prefix sum Xi := x0⊕x1⊕· · ·⊕xi−1. An optimal parallel algorithm to compute
prefix sums uses a binary merge tree as described by JáJá [16, section 2.1.1]. We can easily
apply it to our distributed scenario: a processing element with rank 2k sends its local value
x2k to processing element 2k + 1, the right sibling in the merge tree. Processing element
2k+ 1 computes the sum x2k +x2k+1 and forms the parent node k in the merge tree. This
process is repeated recursively in a bottom-up manner, after which p

2 processing elements
know their respective prefix sums. In a second phase, the inner nodes communicate in
top-down manner to deliver the prefix sums to the remaining p

2 processing elements. An
example is shown in Figure 3.

Corresponding to the costs of the parallel algorithm shown in [16], the prefix sum com-
putation using a binary merge tree has 2(dlog pe − 1) BSP barriers — one between each
level of the merge tree and in both directions. We need to send a total O(p) · wN words
(assuming X ⊆ N) and require O(p) steps of local work on each processing element.

P0 P1 P2 P3 P4 P5 P6 P7

+ + + +

+ +

+

(a) First phase (bottom-up) of the dis-
tributed prefix sum computation.

P0 P1 P2 P3 P4 P5 P6 P7

+ + + +

+ +

+

(b) Second phase (top-down) of the dis-
tributed prefix sum computation.

Figure 3: Example of the two phases of a distributed prefix sum computation of eight processing
elements using a binary merge tree. The x-axis represents the processing elements that
hold a respective value and the y-axis represents BSP barriers. Only the thick arrows
actually mean communication; values passed using the thin arrows do not need to be
sent over the network.
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P0 P1 P2 P3 P4 P5 P6 P7

X X X X

X X

X

Figure 4: Example of the broadcast phase of the AllReduce operation following Figure 3a. Only
the thick arrows actually mean communication; values passed using the thin arrows do
not need to be sent over the network.

In the scope of this thesis, we only need the exclusive prefix sum X ′i := Xi − xi, which
is the prefix sum sans the local value xi.

2.4.2 AllReduce

Using the binary tree communication pattern, we can also perform the distributed oper-
ation known as AllReduce, which computes the reduction X = x0 ⊕ x1 ⊕ · · · ⊕ xp−1 and
broadcasts it back to all processing elements. It is easy to see that X = Xp−1, i.e., the
reduction equals the prefix sum of all p− 1 items.
We can compute it using the tree topology as shown in Figure 3a. The processing

element forming the root node (processing element 7 in the figure) then holds the reduction
X. To broadcast X to the other processing elements, we simply invert the direction of
communication and have every node send X to its two children as shown in Figure 4.
Finally, all processing elements know X.
The BSP costs of this algorithm are the same as for prefix summing. Even though it is

optimal in terms of local work and communication, there have been many optimizations
of the AllReduce protocol for practical uses (e.g., [27] and [26]).
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In this chapter, we adopt the briefly introduced ideas for parallel wavelet tree construction
in multiprocessor, shared memory settings to develop distributed algorithms and analyze
their theoretical performance in the BSP model.

Let us first specify our scenario: we want construct the wavelet tree for the input text T
of length n over the effective alphabet [0, σ) using p processing elements which are aware
of each other and may communicate over a network. In a preliminary step, T is partitioned
so that processing element i — the i-th processing element in the network with i ∈ [0, p)

— initially holds part Ti = T [idnp e . . . (i + 1)dnp e − 1] of length dnp e. In the case that n
is not a multiple of p, the last processing element may process a slightly shorter part of
length n mod p. We consider that case an implementation detail and will not regard it
any further.

Our desired output form of the global wavelet tree for T is the levelwise representation
consisting of dlog σe bit vectors B0, . . . , Bdlog σe−1 of length n each. The bit vectors should
be balanced so that each processing element has an equal number of dnp e bits per level, i.e.,
dlog σe · dnp e bits in total.

In the following, we first take a look at how to retrieve the histogram and effective trans-
formation of the input text in section 3.1. We then develop three distributed algorithms
for wavelet tree construction — using domain decomposition (section 3.2), a distributed
split operation (section 3.3) and stable sorting (section 3.4) — and analyze them in the
BSP model.

3.1 Histogram Computation & Effective Transformation

The histogram of the input text contains crucial information about the wavelet tree. As
described in section 2.2.1, we can use it to compute the C array and predict the size of each
node. This is required, because some of the algorithms presented in this chapter produce
the node-based representation of the wavelet tree as an intermediate result. Furthermore,
in a real application, it is unlikely that the input is given in its effective transformation.
In this case, we need to transform the input.

We develop the distributed Algorithm 2 to compute the histogram of T in a distributed
setting and then produce the effective transformation. First, each processing element i
computes the local histogram Hi by scanning the local part Ti once (starting at line 2).
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Algorithm 2: Distributed computation of the histogram H and the effective trans-
formation Teff for input text T using AllReduce.
Input : text T ∈ Σn

Output: effective alphabet size σ ∈ N, histogram H ∈ Nσ, effective transformation
Teff ∈ [0, σ)n

1 Function prepare(T )
// compute local histogram

2 parfor i = 0 to p− 1 do
3 for c = 0 to |Σ| − 1 do
4 Hi[c] := 0|Σ|

5 parfor k = 0 to n− 1 do
6 Hi[T [k]]++

7 h← AllReducep−1
i=0 (Hi)〈

BSP: 2(dlog pe − 1) implicit barriers
〉

// compute the effective alphabet and mapping
8 σ := 0, eff := 0|Σ|

9 for c = 0 to |Σ| − 1 do
10 if H[c] > 0 then
11 eff[c] := σ
12 σ + +

// perform effective transformation
13 parfor k = 0 to n− 1 do
14 Teff[k] := eff[T [k]]

15 return (σ,H, Teff)

The global histogram H is the result of an AllReduce operation (line 7), i.e., we sum up the
local occurrence counts and broadcast them back to all processing elements. Note how we
highlight implicit the BSP barriers caused by the AllReduce operation in the pseudocode
listing. Knowing the global histogram H, we can determine the size σ of the effective
alphabet and create a mapping that maps symbols from the input alphabet Σ that occur
in T to [0, σ) (starting at line 8). In a final scan of Ti (starting at line 13), we use this
mapping to perform the effective transformation of the input.

BSP costs. The only distributed operation performed by Algorithm 2 is the AllReduce
operation, which requires O(p) steps of local work and 2(dlog pe−1) BSP barriers and sends
O(p) · wN words (see section 2.4.2). Additionally, O(np ) steps of local work are needed for
the scans of Ti and O(|Σ|) steps for the computation of the effective alphabet mapping. In
summary, Algorithm 2 requires O(np + |Σ|+ p) steps of local work.

3.2 Domain Decomposition

Domain decomposition is a very straightforward technique to split up work across the avail-
able processing elements, which has first been used for parallel wavelet tree construction
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Figure 5: Domain decomposition of the wavelet tree for T = wavelettree using three process-
ing elements, where the first processing element computed the wavelet tree for part
T0 = wave (leftmost), and so on. The empty nodes occur due to the fact that the global
alphabet is used for construction and some symbols do not occur in the corresponding
parts of the text. Comparing against Figure 1, we see that the left-to-right concatena-
tion of the local bit vectors for each node equals the corresponding global node’s bit
vector.

by Sepúlveda et al. [29]. Each processing element i computes the entire wavelet tree for its
part Ti of the input. Subsequently, these partial wavelet trees are merged into the global
wavelet tree.

3.2.1 Local Computation

Because each processing element i constructs the wavelet tree for Ti in its entirety and
independent of the other processing elements in the network, there are no requirements as to
which algorithm is used to do that. However, it is important that the computation is done
with respect to the global alphabet [0, σ) — despite the fact that some c may never occur
locally in Ti. We assume that the local wavelet tree is computed after W (localWT) local
work steps and that it is produced in its node-based representation so that on computer i,
we have a bit vector Bv,i for every node v ∈ [0, 2σ − 1).
In case the local algorithm computes the levelwise representation, we can transform it

into the node-based representation by computing the node boundaries using the C array
as described in section 2.2.1. In this case, we need negligible O(σ) additional steps of local
work.

3.2.2 Balanced Merge

Each processing element i now has the wavelet tree for Ti in its node-based representation.
Figure 5 shows an example for this scenario.
In order to merge these local wavelet trees to retrieve the global wavelet tree, we make

use of the fact that the input has been partitioned in the order of the processing element
ranks and that the wavelet tree has been computed with respect to the global effective
alphabet [0, σ): for each node v, we concatenate all the bit vectors Bv,i of each processing
element i in the order of their ranks.
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Algorithm 3: dddWTMerge – merges the wavelet tree’s local node bit vectors into
the global level bit vectors. The function NodeLength computes the length of a node
using the precomputed C array from the histogram as described in section 2.2.1,
which we do not regard here in detail.
Input : effective alphabet size σ ∈ N, histogram H : Nσ, bit vectors Bv,i for each

node v ∈ [0, 2σ − 1) and processing element i ∈ [0, p).
Output: bit vectors B` : Bn for each level ` ∈ [0, dlog σe).

1 Function dddWTMerge(σ, H, Bv,i)
// prefix sum computation

2 parfor i = 0 to p− 1 do
3 for v = 0 to 2σ − 2 do
4 offi[v] :=

∑i−1
j=0 |Bv,j |〈

BSP: 2(dlog pe − 1) implicit barriers
〉

// copy first level from root node
5 parfor i = 0 to p− 1 do
6 d := i · dnp e
7 B0[d, d+ dnp e − 1] := B0,i

// bit redistribution for remaining dlog σe − 1 levels
8 for ` = 1 to dlog σe − 1 do

// concatenate bit vectors of nodes on level `
9 off := 0

10 parfor u = 0 to 2` − 1 do
11 v := 2` + u // node BFS rank
12 parfor i = 0 to p− 1 do
13 d := off + offi[v]
14 B`[d, d+ |Bvi| − 1] := Bv,i // distribute bit vector range〈

BSP: implicit barrier
〉

15 off := off + NodeLength(v,H)

16 return (B0, . . . , Bdlog σe−1)

The caveat is that we would like to have the global wavelet tree in its levelwise represen-
tation and also balanced across our p processing elements so that each processing element
has dnp e bits of each level. In order to save additional subsequent steps, our merge opera-
tion should take care of both requirements simultaneously. To achieve this, each processing
element may have to send different ranges of its bit vectors to different recipients. The
difficulty lies in determining those recipients, because exactly which processing element
shall receive a certain bit vector range depends on how many bits processing elements with
a lower rank will send, which corresponds to the problem of finding prefix sums. In the
following, we develop Algorithm 3 (dddWTMerge) for our balanced wavelet tree merge.

Prefix sums. On processing element i, let offi[v] be the starting position of Bv,i within
Bv for any node v. In other words, offi[v] is the starting position of the first local bit of v
within v’s bit vector in the global wavelet tree. It is the exclusive prefix sum of the sizes
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|Bv,j | for processing elements j < i (line 4), which we compute using a binary merge tree
as described in section 2.4.1. It is important to note that we are computing prefix sums of
vectors containing up to 2σ − 1 items each (one for each node). Taking this into account,
the prefix sum computation sends O(pσ) ·wN words and requires O(pσ) steps of local work.
The number of 2(dlog pe − 1) BSP barriers remains unaffected by the number of items per
vector.

Bit redistribution. With knowledge of offi[v], we can distribute the bits across the avail-
able processing elements so each processing element has an equally sized part of the cor-
responding level bit vector B`. Figure 6 visualizes what we would like to achieve.

When processing element i processes node v on level `, it needs the position off(v, `) of
the first bit of Bv in B` (line 15). As seen previously, it can be computed using the C
array, which we can precompute from the histogram in negligible time O(σ). The position
of the first bit of Bv,i in B` is then off(v, `) + offi(v) (line 13).

Since every processing element is supposed to hold exactly dnp e bits, we can now easily
determine the recipient for every bit in Bv,i. Let k ∈ [0, |Bv,i|) be the position of such a
local bit. Then its recipient is processing element

j =

⌊
off(v, `) + offi[v] + k

dnp e

⌋
.

Because the local wavelet tree was constructed for a text of length dnp e, it is |Bv,i| ≤ dnp e.
This means that there may be at most two different recipients for the bits ofBv,i. Therefore,
the total number of messages sent by all p processing elements for all the 2σ−2 nodes is at
most 2p(2σ−2) = O(pσ) (the root node does not need to be merged). Because the messages
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Figure 6: Visualization of the balanced merge operation of the domain decomposition shown in
Figure 5. The figure specifically highlights the merge of the second level. Note how the
bits of the left local nodes are concatenated in the left part of the second level bit vector
and the bits of the right nodes in the right part. The dotted lines mark the boundaries
of the bit vectors on each processing element. The first processing element (leftmost)
needs to send the two bits of the node with BFS rank 3 to two different processing
elements to achieve balance.
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contain at most dnp e bits each, the total number of words sent is inO(pσ np )·wB = O(nσ)·wB.
All nodes need to be scanned once locally on each processing element, which can be done
in O(σ np ) total steps. Regarding BSP barriers, we perform the redistribution levelwise and
require one barrier synchronization for each level. Since we need to merge dlog σe−1 levels,
we have dlog σe − 1 barriers in total (the first level corresponds to the root node and does
not need to be merged).

Summarized BSP costs. In summary, the balanced merge can be done with O(pσ+σ np )

local work steps, sending O(pσ) ·wN+O(nσ) ·wB words and requiring 2dlog pe+dlog σe−3

BSP barriers.

3.3 Distributed Split

Labeit et al. [19] present the recursiveWT algorithm for multiprocessor scenarios with
shared memory, which makes use of a parallel split operation. The idea is as follows: when
we process node v for alphabet [a, b] ⊆ [0, σ], we (1) compute the node’s bit vector Bv
in parallel, so that each processing element only scans dnp e symbols, and then (2) split
up T into T 0 and T 1 and recurse using p

2 processing elements for the left and right child
of v, respectively. The split of T into T 0 and T 1 is done according to the bits in Bv: if
Bv[k] = 0 for some k, the symbol T [k] is appended to T 0 and analogously, if Bv[k] = 1,
T [k] is appended to T 1. Figure 7 shows an example of a split operation.

We develop Algorithm 4 (dsplitWT ) that computes the wavelet tree in its node-based
representation using a distributed split operation for root node v, alphabet interval [a, b]

and processing elements i to j. In order to construct the complete wavelet tree, we invoke
the algorithm for the root node v = 0, the entire effective alphabet [a, b] = [0, σ), the full
input text T and all p processing elements with i = 0 and j = p− 1.

In the following, we show how the parallel split can be applied to a distributed scenario.
Furthermore, because our goal is the levelwise representation, we need to merge the node
bit vectors into level bit vectors, which we describe in section 3.3.2.

wav ele ttr ee

reeaele wv tt

T

T 0 T 1

P0 P1 P2 P3

P0 P1 P2 P3

Figure 7: Parallel split on the first level of our running example T = wavelettree using p = 4
processing elements. Initially, each processing element i ∈ [0, 4) has part Ti and decides
which symbols go to T 0 and which go to T 1. Both T 0 and T 1 will be processed by only
p/2 = 2 processors and the symbols are communicated between the processing elements
accordingly.
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Algorithm 4: dsplitWT – recursively constructs the wavelet subtree with root v
representing alphabet interval [a, b] in its node-based representation using the dis-
tributed split operation with processing elements i to j. As shown in section 3.3.2,
the output of this algorithm can be forwarded to dddWTMerge (Algorithm 3) in
order to compute the levelwise representation.
Input : node BFS rank v ∈ [0, 2σ − 1], alphabet interval [a, b] ⊆ [0, σ), text

T ∈ [a, b]n, processing element ranks i, j ∈ [0, p) with i ≤ j
Output: bit vectors Bu : B∗ for all nodes u in v’s subtree

1 Function dsplitWT(v, a, b, T , i, j)
2 if a = b then
3 return ε // leaf
4 if i < j then
5 m := ba+b

2 c
// compute bit vector for v

6 parfor k = 0 to n− 1 do
7 Bv[k] := (T [k] > m)

// only split and recurse if either child will be non-empty
8 if b− a+ 1 > 2 then

// split up T according to the bits in Bv

9 (T 0, T 1) := DistributedSplit(T,Bv)〈
BSP: 2dlog(y − x+ 1)e implicit barriers

〉
// recurse on the left and right child using half the processing elements each

10 im := b i+j2 c
11 pardo
12 dddWTMerge(T 0, 2(v + 1)− 1, a, m, i, im) // left
13 dddWTMerge(T 1, 2(v + 1), m+ 1, b, im + 1, j) // right

14 return (Bv, B2(v+1)−1, B2(v+1), . . . )

15 else
// we are left with only one processing element – compute remaining subtree sequentially

16 return SequentialWT(T, a, b)

3.3.1 The Distributed Split Operation

The core idea of the parallel split operation to split up work across the available processing
elements after splitting the input can almost directly be applied to a distributed setting.
However, since there is no shared memory between the processing elements, the distributed
split operation requires communication as depicted in Figure 7.

For a node v, let Bv,i be the part of Bv that processing element i has computed. In
order to perform the split operation, i needs to decide for every symbol c ∈ [a, b] of the
input where to send it to. In the case that c ≤ ba+b

2 c, i.e., if c belongs to the left half of the
alphabet, it should be appended to T 0 and thus sent to a processing element in the range
[0, bp2c]. Otherwise, if c > ba+b

2 c, it is appended to T 1 and sent to a processing element in
the remaining range [bp2c+ 1, p) of processing elements.
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3 Distributed Wavelet Tree Construction

Without loss of generality, let us assume in the following that c belongs to the left half
of the alphabet, i.e., it is appended to T 0 and sent to a processing element j ≤ bp2c. The
case where c is added to T 1 can be handled analogously.
T 0 should be balanced across the range of p

2 processing elements. This means that
each processing element should receive the same number

⌈
|T 0|
p/2

⌉
of symbols from T 0. Let

posTi(c) be the position where c is located at in the local part Ti of the input. It is not
yet possible for our processing element i to determine the recipient j, because it only sees
its local part T 0

i of T 0 and lacks the information about where it lies in T 0 globally. To
get this information, it needs to know the length of the concatenation T 0

0 · · ·T 0
i−1 for the

processing elements with rank lower than i, which is the exclusive prefix sum

Zi :=

i−1∑
k=0

|T 0
k |.

To give an example, consider in Figure 7 the first occurrence of t in T on processing
element P2: it is clear that t is appended to T 1, but not whether to keep it at P2 or send
it to P3, because we do not know how many symbols P0 and P1 will append to T 1 prior
to P2. For this, we need the prefix sum Z2 = |T 1

0 |+ |T 1
1 | = 2. We then see that P2 already

holds enough symbols of T 1 and t should be sent to P3.
We can compute Zi in a preliminary step using a binary merge tree as described in

section 2.4.1. With knowledge of Zi, it is possible for processing element i to determine
the recipient

j =

⌊
Zi + posTi(c)

p/2

⌋
of symbol c. In the following, we analyze the BSP costs of the distributed split algorithm.

Number of words sent. We send one substring to each recipient by concatenating the
symbols it should receive, retaining their text order. It is |T 0

i | ≤ |Ti| = dnp e and each

recipient, from all processing elements processing T 0, will receive exactly
⌈
|T 0|
p/2

⌉
≤ d n

p/2e
symbols. This means that processing element i sends the symbols of T 0

i to at most two
different recipients. The same applies to T 1

i , so we have at most four recipients in total.
On the global scope, during one distributed split operation, each processing element sends
at most four substrings of length at most dnp e, resulting in 4p ·O(np ) ·wΣ = O(n) ·wΣ words.
In order to construct the wavelet tree, we need to perform a distributed split operation
for all nodes except those on the last level, i.e., for 2dlog σe−1 − 1 nodes. Thus, we send
O(nσ) · wΣ words in total for all distributed splits.
This does not yet account for the prefix sum computations of Zi and its counterpart

for T 1, which are needed for the processing elements to determine where to send the
symbols of T 0

i and T 1
i . Following section 2.4.1, the number of words sent for the prefix
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3.3 Distributed Split

sum computation of one distributed split operation is in O(p′) · wN, where p′ denotes
the number of processing elements in use. On level `, there are 2` nodes and we use p

2`

processing elements for each node. Therefore, from a level perspective, we use all p′ = p

processing elements and thus send O(p) ·wN words per level. For the dlog σe−1 levels that
we need to perform a split for, this accumulates to O(p log σ) ·wN words being sent for the
prefix sum computations.

In summary, we send an accumulated number of O(nσ) ·wΣ +O(p log σ) ·wN words for
the distributed split algorithm.

BSP barriers. Each distributed split operation requires 2dlog p′e synchronization barriers
in the BSP model when using p′ processing elements: 2dlog p′e − 1 barriers for the prefix
sum computation and one additional barrier for the communication of the substrings. We
perform a distributed split operation for all nodes except those on the last level. However,
because all splits on the same level are performed in parallel, we can summarize the barriers
caused by each split for the whole level. Since we use all p′ = p processing elements for
any of the dlog σe − 1 levels, we get 2dlog pe(dlog σe − 1) total synchronization barriers.

Local work. The local work is dominated by the scans of T for the computation of the
node bit vectors and for sending the substrings. On level `, we process 2` nodes and require
at most O(2` n

p/2`
) = O(2` np ) steps. For all of the dlog σe levels, we require

dlog σe−1∑
`=0

O
(

2`
n

p

)
= O

(
σ
n

p

)

steps of local work for the scans. For each split, we also need a prefix sum computation,
which adds O(p) steps per node and thus O(pσ) steps for all nodes. In summary, the split
operations require O(nσ + pσ) total steps of local work.

Sequential subtree construction. In the case of p < σ, there are not enough processing
elements available to split the processing element range after every node, i.e., there will be a
point during construction where only one processing element remains for a wavelet subtree
(the case i = j in line 15 of Algorithm 4). When this happens, we proceed constructing
the remaining wavelet subtree using a sequential algorithm on that processing element.

To that regard, for small p, the local work steps required depends on the complexity of
the chosen sequential algorithm. The number of words sent and BSP barriers which we
analyzed above are then merely upper bounds.
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3 Distributed Wavelet Tree Construction

3.3.2 Merge

After all nodes have been processed using the distributed split approach, the bit vectors
are scattered across the p processing elements and we need to merge them in order to get
the global wavelet tree in levelwise representation.

It turns out that the scenario is highly similar to that of a domain decomposition: thanks
to the prefix sum awareness of the splits, the symbols in the sent substrings retain their
original order and processing elements receive the substrings based on their rank in the
network. This means that the same initial conditions apply as for the merge of the domain
decomposition, i.e., all nodes’ local bit vectors only need to be concatenated to the get the
global bit vectors. To that end, the merge operation shown in section 3.2 can be reused
here without any modifications.

Following that, we add the BSP costs of the domain decomposition merge: O(σ np ) steps
of local work, H(dd) = O(pσ) · wN + O(nσ) · wB number of words sent and S(dd) =

2dlog pe+ dlog σe − 3 BSP barriers.

3.3.3 Load Balancing

The motivation Labeit et al. [19] state for using the parallel split operation is to reduce
(shared) memory consumption and achieve greater cache-friendliness. Of course, these
aspects do not apply in a distributed setting. However, the approach can easily be modified
to balance work across the available processing elements to optimize local work in practice.

Let z be the number of 0-bits in Bv, i.e., the length of T 0 and size of the left child of v.
Then, n − z is the number of 1-bits, length of T 1 and the size of the right child. Instead
of using p

2 processing elements each for computing the left and right child, we use O(p zn)

processing elements for the left and O(p(1 − z
n)) processing elements for the right child,

with the idea that the number of processing elements used corresponds to the work that
remains on either side.

In the case that O(p zn) ≤ 1, we assume that T 0 is small enough so the left wavelet
subtree can be computed sequentially by one single processing element and the remaining
processing elements can be used to process T 1. The inverse case of O(p(1 − z

n)) ≤ 1 is
handled analogously.

Since we still process the number amount of nodes and levels, the asymptotic BSP costs
of the distributed split algorithm remain as analyzed previously.

3.4 Stable Sorting

The stable sorting approach presented by Shun [31] makes use of the fact that the binary
representation of a symbol encodes the path to its corresponding leaf in the wavelet tree.
Let c ∈ [0, σ) be a symbol from the effective input alphabet. We call the integer represented
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w a v e l e t t r e e
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a e l e r e e w v t t

000 001 010 001 011 001 001 110 101 100 100

T0 =

T1 =

stable sort by first bit

Figure 8: Example of the stable sorting by the one-bit prefix for the first level of our running
example T0 = wavelettree. The binary codes of the symbols are written below the
symbols with the first bit written in bold. To get T1, we stably sort the symbols in T0
by their one-bit prefixes. Note how the transformed text equals the order of symbols
on the second level from the example wavelet tree in Figure 1.

by the ` most significant bits of c’s binary representation the `-bit prefix of c and write
bitpref`(c).
We construct the wavelet tree level by level as follows: on level `, from the current text

T` (initially T0 = T ), we first compute the bit vector B`. If ` is not yet the last level, we
compute T`+1 by stably sorting the symbols in T` in ascending order by their (` + 1)-bit
prefixes and proceed with T`+1. An example is shown in Figure 8.
The correctness of B` follows from the fact that the symbols of T` are in the same order

as their corresponding bits in B`. This is easy to see for T0 = T . Sorting by the bit
prefix in ascending order moves all symbols whose next bit is 0 to the left and those whose
next bit is 1 to the right — which corresponds precisely to the path to their representing
leaves in the wavelet tree. Because the sorting is stable, the relative order of the symbols
is retained.

In distributed computing. This approach reduces most of the wavelet tree construction
to stable integer sorting. Thus, it can be applied to a distributed setting with relative
ease when a stable distributed sorting algorithm is available. Ideally, that algorithm also
balances the sorted sequence across the p available processing elements. We look at two
candidates in section 3.4.1 and section 3.4.2.
Because we construct the wavelet tree in its levelwise representation using the stable

sorting approach, no subsequent merge operation is necessary (as opposed to domain de-
composition or distributed split). Furthermore, if the sorter balances the sorted text for
the next level across the available processing elements, it also indirectly takes care of bal-
ancing the corresponding bit vector so that each processing element finally has n

p bits of
each level.

3.4.1 Distributed Super Scalar Sample Sort

A popular example for a balancing parallel sorter is super scalar sample sort (sss-sort)
presented by Sanders and Winkel [28]. It receives two parameters: the number of sort
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3 Distributed Wavelet Tree Construction

buckets k and the oversampling factor a (which is explained below). Bingmann et al.
implement a distributed variant of sss-sort in the Thrill framework [3]. Their distribution
is essentially based on the idea to fix the number of buckets k to the number of available
processing elements p, so that each processing element holds exactly one bucket of expected
size n

p .

Assuming that initially, each processing element has n
p items of the input sequence, the

distributed sss-sort proceeds as follows:

1. Each processing element first picks the sample of a local items at random (with
a the oversampling factor) and sends them to the master, the processing element
designated to receive all samples (e.g., the processing element with rank 0).

2. The master sorts the p ·a samples it received and attempts to choose p−1 equidistant
splitters. This is where the oversampling factor a comes into effect: the higher the
factor, the more samples the master receives and the higher becomes the probability
that the chosen splitters are equidistant. After choosing the splitters, the master
broadcasts them to all processing elements.

3. The splitters are used for distribution: each processing element determines a recipient
for each local item and sends it there. Because the splitters are sorted, binary search
can be employed to speed up the process.
Based on the samples picked in the first step, the expected number of items each
processing element receives after the distribution is n

p . It then already holds that
xi � xi+1 for any item xi received by processing element i and any item xi+1 received
by processing element i+ 1 (where � denotes the relation according to which we are
sorting).

4. All that remains now is to locally sort the received items on each processing element.
Finally, all item have been sorted globally so that processing element i has the i-th
part of the sorted sequence.

Sample-based sorting vs. wavelet tree construction. There is one major issue regarding
sss-sort in the face of wavelet tree construction. Let us think of the sort operation after
constructing the first level of the wavelet tree: we sort the text by the 1-bit prefixes of the
symbols. This means that we have only two distinct sort keys (0 and 1).

In sss-sort, this means that there are only two distinct samples and it is impossible to
find p− 1 equidistant splitters if p > 2. As a consequence, during the classic distribution
described by Sanders and Winkel [28] and also employed by Bingmann et al. [3], all symbols
are sent to only two of the p available processing elements, causing a major unbalance that
gets worse with higher p. The same applies to the following levels: the sort operation done
on level ` has at most 2`+1 distinct sort keys — the (` + 1)-bit prefixes of the symbols.
Thus, the problem of unbalance exists for the first log p sort operations.
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3.4 Stable Sorting

We can balance items with the same sort key across a range of processing elements using
solutions similar to the “investigator” proposed by Khatami et al. [18]. However, this is no
longer in the scope of this thesis. Instead, we have a look at another sort algorithm which
is inherently suited for wavelet tree construction.

3.4.2 Distributed Bucket Sort

We can turn the problem of low numbers of distinct sort keys into an advantage by re-
imagining what the sort buckets represent: in the wavelet tree, because it is a binary tree,
level `+ 1 has at most 2`+1 nodes — which is equal to the number of possible distinct sort
keys after constructing level `.

This leads to Algorithm 5 (dbsortWT ), in which we employ a distributed bucket sort :
on level `, we allocate a bucket for each of the 2`+1 nodes of the following level (line 4).
We scan the local input Ti from left to right and append each symbol c ∈ [0, σ) to bucket
v = bitpref`+1(c) (line 8), which is in the desired range of [0, 2`+1) and corresponds directly
to the index of c’s node on level ` + 1. Conveniently, the least significant bit lsb(v) of v

Algorithm 5: dbsortWT – constructs the wavelet tree using a stable distributed
bucket sort. The binary ◦ operator denotes string concatenation.
Input : effective alphabet size σ ∈ N, text T ∈ [0, σ)n

Output: bit vectors B` : Bn for each level ` ∈ [0, dlog σe)
1 Function dbsortWT(σ, T )
2 for ` = 0 to dlog σe − 2 do

// construct bit vector and assign buckets
3 parfor i = 0 to p− 1 do
4 for v = 0 to 2`+1 − 1 do
5 Cv,i := new empty bucket
6 parfor k = 0 to n− 1 do
7 v := bitpref`+1(T [k])
8 append Ti[k] to bucket Cv,i
9 B`[k] := lsb(v)

// balanced concatenation
10 T := ε

11 parfor v = 0 to 2`+1 − 1 do
12 Cv := ε
13 for i = 0 to p− 1 do
14 Cv := Cv ◦ Cv,i
15 T := T ◦ Cv〈

BSP: implicit barrier
〉

// construct last level’s bit vector
16 parfor k = 0 to n− 1 do
17 Bdlog σe−1[k] := lsb(Ti[k])

18 return (B0, . . . , Bdlog σe−1)
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3 Distributed Wavelet Tree Construction

represents the direction we take to get to c’s node on the next level, i.e., it is the bit we
set in B` at c’s position (line 9).
One scan requires O(np ) steps of local work. We need to perform a scan for all dlog σe

levels: even though the buckets are not needed for the last level of the wavelet tree —
because there is no need to sort afterwards — we still need to compute its bit vector
(line 16). In total, the scans require O(np log σ) steps of local work.
All symbols in the same bucket share the same sort key v and are thus already sorted.

Because we fill the buckets in a left-to-right scan, their relative order is retained and the
sorting is stable. What follows is an operation very similar to the merge we described for
the domain decomposition: we perform a balanced concatenation of the buckets (line 11 to
line 15).

Balanced concatenation. Let Cv,i be the bucket that processing element i has filled for
node v ∈ [0, 2`+1) on level `. We call the concatenation Cv := Cv,0◦ Cv,1◦· · ·◦Cv,p−1 of each
processing element’s local bucket for v the global bucket for v. Then, the concatenation
T`+1 = C0 ◦ · · · ◦C2`+1−1 of the global buckets is the stable sorting of T` in ascending order
by the symbols’ (`+ 1)-bit prefixes. Figure 9 shows an example.
Our goal is to balance T`+1 so that each processing element has an equal number of dnp e

symbols for processing the next level. As mentioned above, this is very similar to merging
node bit vectors for the domain decomposition. In fact, our concatenation can be seen as
a domain decomposition of level `+ 1, except that we do not concatenate the bits of B`+1,
but the substrings of T`+1. Therefore, the same techniques can be applied.
In the following, we adapt the BSP cost analysis of the domain decomposition merge

(section 3.2) to our slightly different scenario. The concatenation consists of two phases:
(1) computation of prefix sums and (2) redistribution (of substrings instead of bits).

Prefix sums. Assume that we are processing level `: we are building prefix sums of
vectors with one dimension per bucket, i.e., 2`−1 integers per vector. Thus, the prefix sum
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Figure 9: Example of the distributed bucket sort for the first level on our running example T =
wavelettree using p = 3 processing elements. Each processing element i has two sort
buckets C0,i and C1,i and already assigned the symbols accordingly. The buckets are
then concatenated by sending their symbols to the corresponding processing elements.
Note that the symbols in bucket C1,0 are sent to two different processing elements (P1

and P2) in order to achieve balance.
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3.5 Summary & Discussion

computation sends O(p2`) · wN words, requires O(p2`) steps of local work and is finished
after 2dlog pe − 1 BSP barriers.
In order to compute the dlog σe levels of the wavelet tree, dlog σe − 1 sort operations

(concatenations) are required. The number of local work steps required sums up to

dlog σe−1∑
`=0

O(p2`) = O(pσ).

Accordingly, O(pσ) · wN words are sent. The total number of BSP barriers sums up to
(dlog σe − 1)(2dlog pe − 1).

Redistribution. For the redistribution of substrings, following our analysis in section 3.2.2,
we send at most two substrings from each processing element for each of the 2`+1 buckets
on level `. Because the messages contain at most dnp e symbols each, the number of words
sent is O(n2`) · wΣ. For all dlog σe − 1 levels, this amounts to O(nσ) · wΣ words. The
steps of local work required are in O(2` np ) on level ` and thus in O(σ np ) for all levels. On
each level, the redistribution induces one BSP barrier and thus we have dlog σe − 1 BSP
barriers in total.

3.5 Summary & Discussion

We summarize the BSP costs of the algorithms presented in the previous sections in Table 4.
The asymptotic local work steps and number of words sent by dddWT (distributed do-

main decomposition) and dbsortWT (bucket sort) reflect the similarity between the merge

Algorithm Local work Words sent Barriers

dddWT
W (localWT)

+O(pσ + σ np )
O(pσ) · wN +O(nσ) · wB 2dlog pe+ dlog σe − 3

dsplitWT O(nσ + pσ + σ np )
O(p log σ) · wN
+O(nσ) · wΣ

+H(dddWT)

2dlog pe(dlog σe − 1)
+S(dddWT)

dbsortWT O(np log σ + pσ + σ np ) O(pσ) · wN +O(nσ) · wΣ 2dlog pedlog σe

prepare O(np + |Σ|+ p) O(p) · wN 2(dlog pe − 1)

Table 4: Summary of the BSP costs of the three approaches. The final entry, prepare, stands
for the initial computation of the histogram and effective transformation of the input
(section 3.1), which os not included in the other rows. For dddWT, we denote the local
work required by the local wavelet tree construction by W (localWT). For dsplitWT, we
use H(dddWT) and S(dddWT) to denote the number of words sent and BSP barriers in
the domain decomposition, respectively. Regarding the local work of dsplit, we assume
p ≥ σ so that no sequential construction is required.
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operation done in domain decomposition and the bucket concatenation in the distributed
bucket sort. The only difference lies in the fact that dbsortWT distributes symbols, whereas
dddWT distributes bits, which likely means reduced traffic in practice. Concerning BSP
barriers, dddWT has the big advantage that only one prefix computation is required that
takes care of the whole wavelet tree, whereas in dbsortWT, we require one prefix sum com-
putation per level. Another advantage of dddWT is that it is completely independent of
the locally employed sequential wavelet tree construction algorithm. To that end, research
advancements in the sequential or multi-core parallel, shared memory construction can be
applied to dddWT directly.
However, dbsortWT and dsplitWT (distributed split) both have a property that dddWT

does not have: they split up the text, put it in the order of the bits on the current level of the
wavelet tree and balance the re-ordered text across the processing elements. This induces
a locality of data that belongs to the same wavelet subtree: in the case of dsplitWT, this is
done explicitly by design, whereas it happens implicitly in dbsortWT by using a balanced
concatenation of buckets. Depending on the network topology, this may be an advantage if
processing element ranks are assigned in a way that resembles the communication costs in
the network, e.g., if processing elements that are physically far from each other also have
a high difference in their ranks.
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In this chapter, we discuss the implementations of the distributed wavelet tree construction
algorithms presented in chapter 3 which we use for the practical evaluation in chapter 5.
The source code is written in C++14 and is available in a public repository3.

We implement algorithms for two different worlds: the Thrill world is based on the
Thrill C++ framework for distributed big data processing developed by Bingmann et al.
[3] and makes use of its high-level programming interface. The MPI world revolves around
the message-passing interface that comes as C libraries4.

Note that there is no implementation of the distributed split algorithm for Thrill. This is
because Thrill’s high-level programming interface provides no control over which processing
elements are used to process a certain DIA. However, this kind of control is essential for
the distributed split algorithm, which is why there is no way to implement it using Thrill’s
API. Furthermore, there is no implementation of wavelet tree construction using sss-sort
in MPI. The reason for this is the inherently poor load balancing of sss-sort in the face
of wavelet tree construction as described in section 3.4.1. Despite this, there is a Thrill
implementation using sss-sort as it was the first implementation written in the scope of
this thesis (before the load balancing issues were discovered). We keep the thrill-sss-sort
implementation to demonstrate the issue in our practical evaluation.

4.1 Prerequisites

We first cover the implementation of non-trivial operations and data structures required
for the implementations of the algorithms.

4.1.1 Output Format Specification

For the sake of reusability of the output produced by the implementations (e.g., for decod-
ing and verification), we first specify the output format of wavelet trees on a distributed
file system (DFS).

3All source code related to the implementations of thesis is available at https://github.com/pdinklag/
distwt.

4We use the widespread Open MPI (https://www.open-mpi.org/) throughout development but the Intel
MPI Library (https://software.intel.com/en-us/mpi-library) for the practical evaluation as it is
optimized for Intel clusters. MPI source code is typically compatible to both MPI implementations.
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Level bit vectors. As specified in chapter 3, we want the wavelet tree in its levelwise
representation, consisting of dlog σe bit vectors of length n each. Because p processing
elements will be writing bit vectors to the DFS simultaneously, it would be problematic,
in practice, to have them write to the same file. Instead, per bit vector (i.e., per level),
we allow each processing element to write into its own file in a common directory on the
DFS. To that end, each level of the wavelet tree will be stored in p files of dnp e bits. If
needed, these files can be concatenated — with possible byte-alignment bits in mind — in
a subsequent step that we do not regard any further.

Auxiliary information. In order to be able to decode the wavelet tree and restore the
original input text T (e.g., for the purpose of verification), we also need to store auxil-
iary information about T . Conveniently, the histogram of T implicitly contains all the
information we need:
• The sum of the occurrences of all symbols equals the text length n.
• The number of non-zero entries in the histogram equals the size of the effective

alphabet σ, which can be used to compute the height of the wavelet tree.
• Furthermore, the non-zero entries can be used to map the effective alphabet [0, σ)

back to the input alphabet Σ.
• As shown in section 2.2.1, the histogram can be used to compute the sizes of the

wavelet tree’s nodes and therefore the entire tree structure.
Since the histogram is required in order to find σ and compute the effective transforma-

tion of the input, we choose to store it in a single file on the DFS next to the bit vectors
after it has been computed.

4.2 Thrill Implementations

One of the initial goals of this thesis was to implement a wavelet tree construction algorithm
in Thrill. For this reason, we first look at the Thrill implementations before proceeding to
MPI.

4.2.1 Thrill-Specific Prerequisites

We recall some properties of Thrill’s distributed immutable arrays (DIA, see section 2.3.3):
there is no information exposed as to where (i.e., on which processing element) or —
because of lazy evaluation — even whether their entries currently exist. The only way to
process a DIA is by using the sequence-based operations provided by the Thrill API. This
has big consequences on the way we design algorithms. In this section, we see how we
cover some basics using Thrill’s toolset.
The input text can be read from disk using the ReadBinary source node, which will

provide it in a DIA of characters.
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Histogram and effective transformation. Thrill already provides all the tools we need
to implement Algorithm 2 (from section 3.1) to retrieve the histogram and effective trans-
formation of the input.
The local histogram computation can be done with one scan of the input DIA using the

local Map operation. As the mapping function, we use an extended identity mapping that
also increases the local occurrence counter for each processed character. Thrill provides an
implementation of AllReduce, which we use to compute the global histogram from the local
counters. Finally, the effective transformation is naturally a mapping function by itself.
We apply it using another Map operation on the input DIA.

Representation of wavelet trees. We are dealing with two representations of the wavelet
tree: the node-based representation as an intermediate result during the domain decom-
position algorithm, and the levelwise representation for the final result.
In either case, the contents of nodes or levels are bit vectors. Because Thrill does not

provide a bit DIA, we use DIAs of r-bit integers to simulate them. On r-bit architectures
(e.g., r = 64), this maximizes the number of bits packed into a single register. An alter-
native way to implement bit DIAs would be DIAs of boolean values. However, alignment
rules would cause each item to be stored in a byte, essentially wasting seven bits per DIA
element.
We use arrays5 of bit DIAs for our wavelet tree representations. For the levelwise rep-

resentation, we can simply use an array of dlog σe bit DIAs. Because the wavelet tree is
a binary tree of size 2σ − 1, we can use an array of size 2σ − 1 bit DIAs to store the
node-based representation, where the i-th entry represents the node with BFS rank i and
its children are located at positions 2(i+ 1)− 1 and 2(i+ 1).

DIA Concatenation. A key task in all of the algorithms from chapter 3 is concatenation:
for the merge step in the domain decomposition algorithm, we concatenate bit vectors and
for bucket sort, we concatenate buckets (strings).
Unfortunately, concatenation of DIAs is a very heavy operation in Thrill. This is due

to the fact that Thrill does not keep any central information about where any part of a
DIA is located (because it may not even exist yet). While Thrill does provide a distributed
Concat operation, it is recommended not to use it if there are other ways to achieve a
concatenation. In our use cases, because the sizes of wavelet tree nodes can be precomputed
from the histogram, we can use the following sequence of operations:

1. We map each element x of the input DIAs to a tuple (k, x), where k is the item’s index
in the concatenated sequence. Thrill provides the operation ZipWithIndex that does
this for a single DIA. We add our precomputed offsets for each DIA to the indices
provided by Thrill in order to compute k.

5In practice, we use std::vector from the Standard Template Library.
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· · · · · ·

1 2 · · · m m+ 1 m+ 2 · · · m+ n

ZipWithIndex ZipWithIndex

· · ·21m+ 1 m+ 2 m · · · m+ n

Union

1 2 · · · m m+ 1 m+ 2 · · · m+ n

Sort

· · · · · ·

Map

Figure 10: Four-step concatenation of two DIAs of sizes m and n, respectively. The numbers
represent the augmentation of items x to indexed tuples (k, x). The coloring is only
for visualization purposes and does not represent any information available to Thrill.
The order of elements in the DIA resulting from the Union operation is arbitrary and
only exemplified in this figure. It may be any other order in practice, making the
sorting necessary.

2. We then use Thrill’s local Union operation to merge the input DIAs. The result is a
single DIA that contains all elements (our tuples (k, x)) in unspecified order.

3. The concatenation can now be done using the Sort operation. We sort the union
created in the previous step by the indices k that we gave to each element in the first
step. The result of the sort operation is the concatenated DIA. Because Thrill uses
sss-sort (section 3.4.1), the concatenation can also be expected to be balanced across
our processing elements.

4. We no longer need the indices k and thus map all tuples (k, x) back to just x.

Figure 10 shows an example. While this seems like a long detour to achieve concatenation,
it is actually less expensive than a generic concatenation, because we give Thrill valuable
extra information by adding the precomputed node sizes to the indices. In a generic
concatenation, this information needs to be extracted from the DIAs first, which is a very
costly endeavor as we confirm in our practical evaluation.

Concatenation of bit DIAs. The concatenation of bit DIAs, as required by the domain
decomposition algorithm, holds an additional challenge: because we use r-bit words to
back bits, each part of every bit DIA on every processing element may contain a < r

alignment bits that need to be purged by the concatenation.
Because Thrill has no explicit support for bit DIAs, we are not aware of a better way

to achieve this other than mapping the bit DIA to a temporary DIA of boolean values
excluding the alignment bits6, and then map the result back to a bit DIA. The temporary
waste of seven alignment bits for each element due to using a boolean DIA needs to be
tolerated.
6Thrill provides a FlatMap operation, where the mapping function may emit an arbitrary number of
elements to map a value to. We make use of this to emit zero elements for the alignment bits, which
effectively removes them.
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4.2.2 Stable Sorting in Thrill

Thrill features a distributed Sort operation to sort a DIA according to a given order (defined
by a comparison function). However, this sort operation is not stable. Thrill’s sorter is
a distributed implementation of super scalar sample sort (sss-sort, see section 3.4.1). We
recall the single stages of the sorting:

1. Each processing element randomly selects a sample of local items and sends it to the
master.

2. The master selects splitters and sends them to all processing elements. The splitters
essentially represent sort bucket boundaries and each processing element is assigned
one of these buckets.

3. Each processing element distributes their local items according to the splitters, sort-
ing them on a processing element rank level.

4. Finally, each processing element locally sorts its respective bucket. The items are
then globally sorted.

We analyze Thrill’s implementation of sss-sort and identify the following causes for the
sorting not being stable:
• The local sorting of the buckets is done using std::sort by default, which is not

stable.
• In case any bucket becomes too large for the local sorting to be done in memory,

Thrill externalizes it into several local files. These files are sorted one by one and the
sorted sequences are then merged in a multiway merge step. This multiway merging
is not stable by default.
• The distribution of items to the corresponding processing elements according to the

splitters is done asynchronously. This means that a processing element scanning a
late part of the input sequence may send an item to its bucket before a processing
element scanning an early part of the input does. In this case, the respective bucket
is no longer in input order and stability is lost.

We implement a SortStable operation that has since been merged into the official repos-
itory7. To achieve this, we apply the following modifications to Thrill’s original Sort.

Local sorting. The first cause for instability – the use of std::sort for local sorting – is
easily rectified by using std::stable_sort instead.

Local multiway merging of files. We enable stable multiway merging for the case that
a processing element’s bucket is split into multiple files. A file with a lower index contains
earlier items from the input sequence. Therefore, stability can be achieved by extending
7The official code repository for Thrill is found at https://github.com/thrill/thrill. The stable sort
operation was incorporated into Thrill due to the following pull request: https://github.com/thrill/
thrill/pull/181.
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Algorithm 6: Wavelet tree construction using stable sorting in Thrill. This first
variant uses our StableSort operation, which is a stable implementation of distributed
super scalar sample sort.
Input : effective alphabet size σ ∈ N, text DIA T ∈ [0, σ)n

Output: bit DIA B` : Bn for each level ` ∈ [0, dlog σe)
1 Function thrillSssSortWT(σ, T )
2 for ` = 0 to dlog σe − 1 do
3 r := dlog σe − 1− ` // right shift operand

// construct bit vector
4 B` := Map(T, {c 7→ ((c� r) and 1)})
5 if ` is not the last level then

// sort text
6 T := StableSort(T, {(c1, c2) 7→ ((c1 � r) < (c2 � r))})
7 return (B0, . . . , Bdlog σe−1)

the comparison function of elements: if two items from different files are equal, the one
from the file with the lower index is taken first.

Item distribution. The asynchronous distribution of items to their respective buckets
needs to be synchronized so that items received from processing elements with lower ranks
appear first in the bucket. Thrill internally provides different types of streams which are
used to control this. We replace the MixStream used for reception of items by a CatStream,
which operates exactly as desired: it orders received items according to the rank of the
sending processing elements.

4.2.3 Using Stable Sorting in Thrill

With stable sorting now available, we implement thrillSssSortWT (Algorithm 6) for con-
structing the wavelet tree in Thrill using the stable sorting approach as described in sec-
tion 3.4.

We proceed levelwise for each of the dlog σe levels of the wavelet tree. For level `, we
determine the right shift operand r (line 3). The result of shifting any symbol c ∈ [0, σ]

to the right by r (i.e., perform an integer division of c by 2r) is the `-bit prefix of c. We
use the bit prefix (a) to compute the bit vector B` (line 4) by mapping each symbol to
its `-least significant bit, and (b) as the key for the stable sorting done in line 6. The
reordering of the text is not necessary after constructing the final level of the wavelet tree.

4.2.4 Using Bucket Sort in Thrill

We have thoroughly described the issues of sample sort in the scope of wavelet tree construc-
tion (section 3.4.1). In contrast, we saw that bucket sort suits wavelet tree construction
in a natural manner. We implement thrillBsortWT (Algorithm 7) in a way similar to the
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Algorithm 7: Wavelet tree construction using a stable bucket sort in Thrill.
Input : effective alphabet size σ ∈ N, text DIA T ∈ [0, σ)n

Output: bit DIA B` : Bn for each level ` ∈ [0, dlog σe)
1 Function thrillBsortWT(σ, T )
2 for ` = 0 to dlog σe − 1 do
3 r := dlog σe − 1− ` // right shift operand

// construct bit vector
4 B` := Map(T, {c 7→ ((c� r) and 1)})
5 if ` is not the last level then

// fill sort buckets
6 for v = 0 to 2` − 1 do
7 Cv := Filter(T, {c 7→ ((c� r) = v)})

// concatenate buckets
8 T := Concat(C0, C1, . . . , C2`−1)

9 return (B0, . . . , Bdlog σe−1)

previous algorithm, but replace the stable sorting by filling and then concatenating sort
buckets.

Each sort bucket Cv for node v ∈ [0, 2`) on level ` is a DIA of characters. We produce
the buckets by filtering characters from the current text according to their `-bit-prefixes
(line 7). To stably reorder the text, we then only need to concatenate the buckets (line 8,
in the manner described in section 4.2.1).

4.2.5 Domain Decomposition in Thrill

The Filter operation we used for bucket sort is a local operation in Thrill, that is, it is
applied to a DIA’s local part on each processing element. We can make use of this to
implement the domain decomposition algorithm. To construct the wavelet tree locally for
a processing element’s part of the input text DIA, we use the recursive algorithm simpleWT
described by Navarro (Algorithm 1 in section 2.2.3) and apply it to Thrill in Algorithm 8
(thrillRecursiveWT ). We initiate thrillRecursiveWT for the root node v = 0, the entire
effective alphabet [a, b] = [0, σ) and the full input text T .

We use the alphabet’s middle m to compute the bit vector for node v using a mapping
function (line 5), as well as to split up T into T 0 and T 1 for recursing on the left and
right child of v using filters (line 7 and line 9). The Map and Filter operations are local
operations in Thrill and cause no communication. Therefore, Algorithm 8 is a sequential
algorithm.

In order to construct the wavelet tree, the local wavelet trees of all processing elements
need to be merged. As we have analyzed in section 3.2, this is done by concatenating the
bit vectors of all nodes on the same level. We implement thrillWTMerge (Algorithm 9).
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Algorithm 8: Sequential recursive wavelet tree construction in Thrill.
Input : node BFS rank v ∈ [0, 2σ − 1], alphabet interval [a, b] ⊆ [0, σ), text DIA

T ∈ [a, b]n

Output: bit DIA Bu : B∗ for all nodes u in v’s subtree.
1 Function thrillRecursiveWT(v, a, b, T )
2 if a = b then
3 return ε // leaf

// construct bit vector
4 m := ba+b

2 c
5 Bv := Map(T, {c 7→ (c > m)})

// recurse on left child
6 T 0 := Filter(T, {c 7→ (c ≤ m)})
7 thrillRecursiveWT (T 0, a,m, 2(v + 1)− 1)

// recurse on right child
8 T 1 := Filter(T, {c 7→ (c > m)})
9 thrillRecursiveWT (T 1,m+ 1, b, 2(v + 1))

10 return (Bv, B2(v+1)−1, B2(v+1), . . . )

Algorithm 9: Merge of a node-based wavelet tree to the levelwise wavelet tree in
Thrill.
Input : effective alphabet size σ ∈ N, bit DIA Bv for each node v ∈ [0, 2σ − 1).
Output: bit DIA B` : Bn for each level ` ∈ [0, dlog σe)

1 Function thrillWTMerge(σ, B0, . . . , B2σ−2)
2 for ` = 0 to dlog σe − 1 do
3 u := 2` − 1 // first node on level `

4 k := 2` // number of nodes on level `
// concatenate node bit vectors on level

5 B` := Concat(Bu, Bu+1, . . . , Bu+k−1)

6 return (B0, . . . , Bdlog σe−1)

The Concat operation (line 5 of Algorithm 9) is replaced by the concatenation method
described previously. Since we are concatenating bit vectors, we also need to take care of
alignment bits that occur for each processing element.

4.2.6 Verification of Wavelet Trees

To verify the correctness of our implementations in practice, it is crucial to be able to
verify a wavelet tree after construction. The wavelet tree is an encoding of the input text,
since it can be used to answer access queries for every position i ∈ [0, n). We use this
property to decode the wavelet tree and conclude its correctness if the decoded text equals
the original input text.
We recall that the bits of the binary representation of T [i] ∈ [0, σ) encode the path from

the wavelet tree’s root to the node that represents T [i]. Following that, each level of the
wavelet tree contains one bit of T [i]. On the first level, we conveniently find the most
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Algorithm 10: Decoding of the wavelet tree to restore the original text in Thrill.
Input : effective alphabet size σ, bit vectors B` ∈ Bn for each level of the wavelet

tree
Output: effective transformation Teff ∈ [0, σ)n of the input text

1 Function thrillDecodeWT(σ, B0, . . . , Bdlog σe−1)
2 S := ((0, 1), (0, 2), . . . , (0, n))
3 for ` = 0 to dlog σe − 1 do
4 l := dlog σe − 1− ` // left shift operand

// read the `-most significant bit from B` into c components
5 S := Zip(B`, S, {((c, k), b) 7→ (c or (b� l), k)}

// stably sort S according to the `-bit prefixes
6 S := SortStable(S, {((a, ka), (b, kb)) 7→ (a < b)})

// put S back into its original order
7 S := Sort(S, {((a, ka), (b, kb)) 7→ ka < kb})

// map tuples back to the effective symbols
8 return Map(S, {(c, k) 7→ c}

significant bit at position i. On level ` + 1, however, the bits are reordered according to
the bits of B`, as can be seen easiest in the stable sorting algorithm.

We transform the stable sorting algorithm to decode the wavelet tree level by level using
tuples (c, k) ∈ [0, σ)×[0, n), where c is the symbol component used to fill the bits of the k-th
symbol from the original input text. Initially, we have S = ((0, 0), (0, 1), . . . , (0, n − 1)),
i.e., all symbols are initialized as zero. On level `, we read the `-most significant bit of
each symbol from B` into the symbols of S. Then, we stably sort S according to the `-bit
prefixes of its symbols — which are equal to the current c components — and proceed to
level `+ 1. Following the idea of the stable sorting algorithm, the i-th bit is now the next
bit of S[i]’s symbol. After processing all of the dlog σe levels in this manner, each symbol in
S has its dlog σe bits. In a final step, we sort S according to the k component, which mark
the original positions of the symbols in the input text. We can then drop these indices and
have restored the input. We implement this in thrillDecodeWT (Algorithm 10).

We use Thrill’s Zip operation to combine S with bit vector B` on each level (line 5). To
set the `-most significant bit for each tuple, we use the left shift operand l. Because the
index components of S are distinct, the final sort to put S back into text order (line 7)
needs not be stable. We finally drop the indices using a Map operation.

Note that from the wavelet tree itself, we can only restore the effective transformation
Teff of the input text. To regain the original input text, we need to revert the effective
mapping, which can be restored from the histogram that we store besides the level bit
vectors. We will not regard this here any further.

Using bucket sort. The balancing issues of sss-sort for wavelet tree construction due to a
low number of distinct sort keys also apply to the verification. We can solve the issue the
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same way as we do for construction and replace the stable sort operation in Algorithm 10
(line 6) by bucket sort to achieve better load balancing.

4.3 MPI Implementations

Thanks to the high abstraction level, a big advantage of Thrill is the simplicity with which
algorithms can be expressed. The merge step of the domain decomposition is a notable
example comparing Algorithm 3 (dddWTMerge) and Algorithm 9 (thrillWTMerge). How-
ever, these conveniences come at the cost of less control over what a certain processing
element is doing. To that regard, the distributed split algorithm for wavelet tree construc-
tion is a good example that demonstrates the limitations of Thrill: there is no way to
implement it using Thrill’s high-level API.

As these limitations became clear during work on the thesis, the idea came up to also
provide low-level implementations of wavelet tree construction algorithms using MPI. We
discuss these implementations in this section, albeit in less detail compared to the Thrill
implementations. In general, they are much closer to the pseudocode listings of chapter 3
than the Thrill implementations.

4.3.1 MPI-Specific Prerequisites

Looking at a low-level interface like MPI, it becomes clear how much functionality Thrill
has out of the box. The following are some of the requirements we need to implement from
the ground up using the very basic toolset provided by MPI:

• Context management — we need an overview over the available processing elements.
This also includes management of communicators, which we use for the distributed
split implementation.
• Input partitioning — we need to partition the input file so each processing element

initially holds a part of the same size.
• Statistics tracking — MPI does not count the number of bytes sent and received

by itself. This information is important for our practical evaluation. We implement
wrappers around MPI’s send, receive and advanced operations to track or estimate8

the number of bytes sent/received.
• Message management — the buffers used to send and receive messages need to be

allocated and managed manually; MPI provides no functionality to that regard.
Furthermore, messages containing bit vectors need to be packed into data types
supported by MPI (e.g., integers).

8MPI does not specify what algorithms are used for advanced operations such as AllReduce or prefix
sums. Therefore, we estimate the traffic caused by these operations based on the theoretical bounds
given in section 2.4.
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We are not going into greater detail about these topics. For some common distributed op-
erations, MPI does provide implementations out of the box. The functions MPI_Allreduce
and MPI_Exscan (exclusive prefix summing) are of particular interest for us. We use
the MPI_Allreduce to implement the preliminary histogram computation and effective
transformation according to Algorithm 2 (section 3.1).

Representation of wavelet trees. Contrary to the Thrill API, we are not bound to an
abstract concept like DIAs for our MPI implementations. To represent bit vectors, we
choose the bit vector data type provided by the Standard Template Library9 (STL) to
store bit vectors. Furthermore, following the same ideas as for the Thrill implementations,
we use arrays of bit vectors to represent the levels or nodes of the wavelet tree.
For sending bit vectors as MPI messages, they need to be packed into arrays of integer

types MPI is able to handle. In order to maximize the number of bits packed into one
element, we choose MPI_UNSIGNED_LONG_LONG which, at the time of writing, corresponds
to unsigned 64-bit integers on 64-bit architectures.

Range message protocol. Many of the messages sent during the wavelet tree construction
algorithms are substrings or bit vector ranges. The recipient of these messages needs to
know the interval boundaries of these ranges in order to be able to place them at the
correct position locally.
We define a simple range message protocol that consists of two MPI messages. The header

message contains two integer values: (1) the global position of the left interval boundary,
which the recipient translates back to a local position using its rank, and (2) the length
of the range. The payload message then contains the actual substring or bit vector range.
Because the overhead is constant for each message, use of this protocol does not affect any
of the asymptotic word counts analyzed in chapter 3.

4.3.2 Domain Decomposition in MPI

The MPI-relevant part of the domain decomposition revolves around the balancing merge
operation, since the sequential construction of local wavelet trees requires no communica-
tion.

Sequential construction. For sequential construction, we implement the fastest known
practical algorithm pcWT due to Fischer et al. [10]. pcWT constructs the wavelet tree in
a bottom-up manner, using the histogram of the input text to compute node boundaries
for each level. This way, bit vectors for each level can be computed directly from the input
text, which needs no longer be reordered, saving both time and memory.
9Common STL implementations provide a space-efficient implementation of bit vectors in
std::vector<bool>, see https://en.cppreference.com/w/cpp/container/vector_bool.
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Balanced range transmission. The merge of local node bit vectors into the global level
bit vector consists primarily of the bit redistribution in order to concatenate the node bit
vectors in a balanced manner (see section 3.2.2). The key operation performed here is
line 14 in Algorithm 3: in the pseudocode, we simply assign the local bit vector range
into the global bit vector. In practice, this assignment is more complex: the executing
processing element first needs to determine the recipients of the bits and then send them.

We implement the algorithm sendRangeBalanced (Algorithm 11) that refines the men-
tioned pseudocode line of Algorithm 3. The algorithm sends the local item range [a, b] from
an array Ai (i.e., we send Ai[a], Ai[a + 1], . . . , Ai[b]) to recipients based on the offset d.
The offset marks the position of Ai[0] in the global array A (with |A| = n) and may be the
result of a prefix sum computation, as is the case in Algorithm 3.

Each processing element has dnp e items before the redistribution and will receive dnp e
items. Because of this, the local range [a, b] (also of length at most dnp e) will be sent to
at most two different recipients ja and jb, which we determine using the offset d in line 3.
In the case that we have only one recipient, we send the whole local range Ai[a, . . . , b] to
it using the range message protocol defined earlier (line 6). Otherwise, if there are two
recipients, we first need to find the splitter db := jbdnp e (line 9), which is the smallest

Algorithm 11: On processing element i, sends a range of at most dnp e local items
from Ai to recipients so the global array A is balanced across all p processing elements.
Input: local node rank i ∈ [0, p), local array Ai of length at most dnp e, offset d ∈ N,

local interval [a, b] ∈ N× N.
1 Function sendRangeBalanced(i, Ai, d, a, b)
2 if a < b then
3 ja :=

⌊
d+a
dn/pe

⌋
, jb :=

⌊
d+b
dn/pe

⌋
// determine recipients

4 if ja = jb then
// the whole range goes to the same recipient

5 m := b− a+ 1
6 Send (d+ a,m) to ja // header
7 Send Ai[a, . . . , b] to ja // payload

8 else
// there are two different recipients, but it holds that jb = ja + 1

9 db := jbdnp e // splitter

10 ma := db − (d+ a) // number of items to ja
11 mb := (d+ b)− db // number of items to jb

// send first part to ja
12 Send (d+ a,ma) to ja // header
13 Send Ai[a, . . . , a+ma] to ja // payload

// send second part to jb
14 Send (db,mb) to jb // header
15 Send Ai[a+ma, . . . , b] to jb // payload
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global position in A that belongs to the second recipient. Using db, we partition the local
interval [a, b] into two parts and send each part to the corresponding recipient.
Algorithm 11 is useful in all cases where we need to reorder an array A in a balanced

manner, one of these cases being the domain decomposition merge. We use the algorithm
refine the bit distribution in Algorithm 3 for our MPI implementation.

4.3.3 Using Distributed Split in MPI

We implement the load balancing variant of the distributed split operation described in
section 3.3.3. For this, we make use of communicators, which form an isolated commu-
nication group of a set of processing elements. After performing a split operation, the
processing elements that process T 0 or T 1 — the symbols that were assigned a 0-bit or
1-bit on the current level, respectively — are grouped into a corresponding communicator
as shown in Figure 11.
The use of communicators allows MPI to optimize communication between the grouped

processing elements, but it also makes the implementation itself easier: processing element
ranks within a communicator are re-mapped locally so that rank zero corresponds to the
first processing element in the communicator, regardless of its actual global rank. In case
a communicator is left with only one single processing element (e.g., on the bottom level in
Figure 11), we use pcWT [10] for sequential construction of the remaining wavelet subtree.

4.3.4 Using Stable Sorting in MPI

Due to the load-balancing issues of distributed super scalar sample sort in the scope of
wavelet tree construction, we only implement the algorithm using bucket sort (Algorithm 5
in section 3.4.2) in MPI.
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Figure 11: Overview of MPI communicators over the course of the distributed split algorithm
implementation in MPI using eight processing elements. Each node represents a com-
municator, labeled by the processing elements that belong to it. On the top level, the
entire text is processed and split T into T 0 and T 1 using all eight processing elements.
Processing elements P0 to P3 then continue processing T 0 recursively and P4 to P7

recurse on T 1 on the second level and so on.
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Similar to the implementation of the domain decomposition’s merge operation, there is
a part in the pseudocode listing of Algorithm 5 that proves to be more complex in practice.
In this case, it is the balanced concatenation of buckets (line 11 to line 15). We have at most
dnp e symbols in the local buckets and because the concatenation is balanced, all processing
elements will have dnp e symbols after the concatenation. To that end, the same precon-
ditions apply as for the concatenation of node bit vectors in the domain decomposition’s
merge operation. Therefore, we employ the sendRangeBalanced algorithm (Algorithm 11)
in the MPI implementation of the bucket sort algorithm.
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In the following, we present the practical evaluation of the implementations from chapter 4.
We conduct weak and strong scaling experiments in order to analyze their scalability and
get an insight on what algorithms are the most suitable for the distributed construction of
wavelet trees. Furthermore, we conduct a select few experiments specifically for our Thrill
implementations for deeper insight.

5.1 Preparations

Before we proceed to the evaluation itself, we discuss some necessary additions to our
implementations that are not related to the implemented algorithms, but rather serve as
a preparation of our evaluation.

Lazy evaluation in Thrill vs. benchmarking. Thrill makes use of lazy evaluation wherever
possible. This means that no operation is actually executed before its result is needed (e.g.,
if a distributed operation is due on a DIA) and if possible, items are pipelined through
these operations instead of producing the result DIA as a whole and then proceed with the
next operation. This also affects the ReadBinary source operation to read the input from
disk.

Because reading from disk may be subject to heavy performance fluctuations10, it is
common to exclude the initial read from benchmarks for practical evaluations. This is
usually done by starting the timer used for measurements only after the input has been
initially read from disk and cached. However, that point in time does not exist in Thrill’s
concept of lazy evaluation and pipelining: data items would not be read from disk until
they are actually being used. This results in unpredictable scattering of I/O operations
over the program flow, distorting the benchmarking process. This behavior is visualized
in Figure 12a.

To resolve this clash of interests and to create a fixed point in the program flow where we
can be sure that the input has been read from disk and cached as depicted in Figure 12b,
we have to trick11 Thrill into believing that the data is being used before starting our
10In our case, we use a distributed file system with no control over how many parties are using it simul-

taneously.
11This issue has been discussed publicly with the authors of Thrill here: https://github.com/thrill/

thrill/issues/188.
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Disk
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t

(a) Processing a DIA from disk us-
ing lazy evaluation. The actual
reading is done when necessary,
so that there is no specific point
in time where the entire DIA is
cached.

Disk

Cache

Execution

t

(b) Forcing the data to be read from disk and cached
before starting the actual program. The vertical line
marks the point in time at which the DIA has been
cached in its entirety.

Figure 12: Abstract visualization of disk data flow in lazy evaluation against our desired data
flow for benchmarking over time. We visualize three layers: the Disk layer shows
data stored on disk with costly access and unpredictable delays (e.g., a distributed
file system), the Cache layer shows data that is cached and ready to be used by the
program (e.g., in RAM or a local file system) and the Execution layer displays the
data usage in the program execution (e.g., in registers or CPU caches).

actual program: we perform an identity mapping on the input and request its size. Then,
we use the identity-mapped DIA as the input of our actual program. This forces Thrill
to read from disk, apply the mapping and count the number of elements, which are then
cached for the rest of the program execution.

5.2 Experimental Setup

We conduct experiments for the algorithms developed in chapter 3 and implemented in
chapter 4. Table 5 gives an overview.

Implementation Description

thrill-dd Domain decomposition in Thrill.
thrill-sss-sort Construction using stable sorting with sss-sort in Thrill.

thrill-bsort Construction using stable sorting with bucket sort in Thrill.

mpi-dd Domain decomposition in MPI, using the pcWT algorithm due to
Fischer et al. [10] for local sequential wavelet tree construction.

mpi-dsplit Construction using the load-balancing distributed split operation in
MPI. As for mpi-dd, pcWT is used for local sequential computations
in case only one processing is left to process a wavelet subtree.

mpi-bsort Construction using stable sorting with bucket sort in MPI.

Table 5: Overview over the implementations of distributed wavelet tree construction algorithms
written in the scope of this thesis.
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5.2 Experimental Setup

Text n σ Description / Source

CommonCrawl 137.56 GiB 242 Texts of web crawl data from Common Crawl
with markup commands and meta data removed
(http://commoncrawl.org/).

DNA 149.31 GiB 4 Raw DNA string from 1000 Genomes with
FASTQ information removed
(http://www.internationalgenome.org/).

Wiki 127.72 GiB 213 XML-formatted Wikimedia of English, Finnish,
French, German, Italian, Polish and Spanish
Wikipedia articles
(https://dumps.wikimedia.org/).

Table 6: Selected statistics and descriptions of the input text collection used for evaluation, where
n is the total length of the available file and σ the size of the effective alphabet.

Cluster. The evaluation is conducted on the Linux cluster of the TU Dortmund Univer-
sity12. More precisely, we use the cluster’s two-socket nodes, of which there are 316 in
total. Each of these nodes has an Intel Xeon E5-2640v4 processor (ten cores running at
2.4 GHz with 25 MB of L3 cache) and 64 GB of RAM. The nodes are interconnected to a
parallel file system (BeeGFS) via InfiniBand QDR (40 Gbit /s).

Software versions. We use the Thrill snapshot as of September 27, 2018 and modify the
Slurm invocation scripts in order to make them work in our cluster. We compile Thrill,
as well as the implementations of chapter 4, with the GNU g++ compiler version 7.3.0 and
link against the Intel MPI Library 2018.3.

Input text collection. We construct wavelet trees for (prefixes of) the three input texts
listed in Table 6. All texts are stored as ASCII encoded files on the distributed file system.

12Linux Cluster Dortmund, 3rd generation (LiDO3). More information (in German) can be found here:
https://www.itmc.tu-dortmund.de/cms/de/dienste/hochleistungsrechnen/lido3/index.html.
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Figure 13: Median throughput over five iterations in the weak scaling experiments.

5.3 Weak Scaling Results

We conduct weak scaling experiments as follows: for N nodes with 20 processing elements
per node, we process prefixes of length n := N · GiB of each input file, i.e., one gibibyte
per node. We perform five iterations for each experiment and measure

1. the median throughput (i.e., the running time divided by the input size) of the his-
togram computation and construction of the wavelet tree,

2. the total network traffic caused by all nodes, excluding internal shared memory traffic
between processing elements on the same node, and

3. the average memory usage (RAM) per node.

In the following sections, we present and discuss the results for each of the measures.

5.3.1 Throughput

Figure 13 shows the measured median throughputs of our implementations over five iter-
ations.

Throughput of MPI implementations. The highest throughputs are achieved by the
MPI implementations mpi-dd and mpi-bsort, where mpi-bsort seems to be slightly faster
overall up to 64 nodes. The similarity of throughputs stems from the fact that mpi-bsort
is practically just the merge operation of mpi-dd without the previous local wavelet tree
construction. Besides, communication is more local in mpi-bsort as discussed in section 3.5.
This results in more fast shared memory communication compared to mpi-dd. However,
mpi-bsort requires more data to be communicated as it is sending substrings (one byte per
character) rather than packed bit vectors (eight bits per byte), increasing the amount of
handled data by a factor of eight, which likely dampens the throughput a bit compared to
mpi-dd.
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5.3 Weak Scaling Results

On DNA, the throughput of mpi-bsort appears to plummet going past the 64 node
mark. An explanation is the small alphabet size of four, meaning we only construct two
wavelet tree levels and perform only one bucket sort after constructing the first level. In
this sort operation, there are only two very large buckets scattered over all nodes that
need to be redistributed, i.e., the advantage of locality is not yet in effect here. Because
there are no further levels, the locality advantage never applies as opposed to inputs with
larger alphabets (CommonCrawl and Wiki). A similar effect is slightly less visible for
mpi-dsplit, which also achieves data locality on deeper levels.

Among the MPI implementations, mpi-dsplit fares worst concerning throughput, and
it is relatively easy to see why: it requires communication similar to mpi-bsort during
construction (the split text T 0 and T 1, for a whole level, corresponds to the sort buckets,
and after construction, it needs to perform a merge operation similar to mpi-dd. To that
regard, mpi-dsplit is the combination of the heaviest operations of mpi-bsort and mpi-dd,
which becomes visible in the throughput.

We see that for larger alphabets, all MPI implementations scale very well: doubling the
number of nodes also nearly doubles the throughput. To exemplify this, on Common-

Crawl, mpi-dd achieves a median throughput of 1.106 GiB /s using eight nodes on an
8 GiB prefix and a median throughput of 8.380 GiB /s using 64 nodes on an 64 GiB prefix,
i.e., using eight times as many nodes here yields a median throughput that is about 7.6

times higher.

Thrill vs. MPI. The Thrill implementations have a notably lower throughput than the
MPI implementations. We recall that a key operation in distributed wavelet tree construc-
tion is the balancing concatenation of bit vectors or strings. In our MPI implementations,
we use the precomputed wavelet tree structure to simplify the concatenation: after a dis-
tributed prefix sum computation, the transmission of items to their recipients is done in a
single linear pass over the local sequence. In Thrill, however, we can only make use of this
information doing the detour via sorting of the entire sequence.

Throughput of Thrill implementations. We display the throughputs of the Thrill im-
plementations with a higher scale in Figure 14 for better visibility.

Among the Thrill implementations, thrill-dd has the highest throughput and also scales
well up to about 72 nodes: increasing the number of nodes by a factor of eight from 8
to 64 for CommonCrawl, we increase the throughput by a factor of nearly six (from
0.187 GiB /s to 1.072 GiB /s). The domain decomposition minimizes the number of con-
catenated items: after local computation of the wavelet trees, we pack the bit vectors of
each node into 64-bit words. We concatenate only these packs, of which there are d n64e per
concatenation and eliminate alignment bits afterwards.
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Figure 14: Median throughputs of Figure 13, but only displaying the Thrill implementations.

While we perform the same number of concatenations in thrill-bsort, we concatenate
substrings there and the observations we already made for the MPI counterparts apply:
we can only pack eight symbols (in 8-bit ASCII representation) into a 64-bit word, which
results in dn8 e packs to be concatenated, i.e., a factor of eight compared to thrill-dd. For
this reason, the throughput of thrill-bsort is lower overall. However, we observe similar
scalability: going from 8 to 64 nodes, we also increase the throughput by a factor of nearly
six (from approximately 45 MiB /s to approximately 263 MiB /s).

For thrill-sss-sort, we see that going beyond a certain number of nodes does not help
a lot to handle larger inputs. We recall that due to sss-sort’s poor load balancing prop-
erties for wavelet tree construction discussed in chapter 3, there is a greater unbalance
with an increasing number of processing elements after constructing the first level. The
expected effect for our weak scaling experiments is well visible for Wiki: up to about 24
nodes, thrill-sss-sort scales linearly (going from eight nodes with a throughput of approx-
imately 80 MiB /s to a throughput of approximately 177 MiB /s for 24 nodes). However,
beyond that point, adding more nodes no longer increases the throughput that much (e.g.,
approximately 254 MiB /s for 64 nodes).

5.3.2 Network Traffic

Figure 15 shows the measured network traffic caused by our implementations. As one
would expect, the amount of traffic rises with an increasing number of nodes for every
implementation and every input text. We take a look at the differences.

Thrill vs. MPI. The domain decomposition implementations (mpi-dd and thrill-dd) cause
the least amount of traffic. As previously noted, the amount of data that needs to be com-
municated is minimized naturally in this approach. The entire wavelet tree is constructed
locally and the subsequent merge only requires transmission of bit vectors, which we pack
into words of 64 bits each.
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Figure 15: Network traffic in the weak scaling experiments.

Yet, the traffic of thrill-dd is about twice as high as that of mpi-dd. This is an effect
of the way we concatenate bit vectors in Thrill: we need to build indexed tuples and the
index means an additional word for each bit back word. We use 64-bit words to store the
indices, thus we have precisely twice as much data to transmit. However, the fact that
thrill-dd ’s traffic is still second lowest indicates that traffic is not the cause for the poor
throughputs of the Thrill implementations, but more likely the computational complexity
that comes from the sorting required for concatenations.

Traffic of Thrill implementations. The traffic of thrill-bsort exceeds that of thrill-dd by
a factor of approximately eight, which we can explain by the concatenations as well: in
thrill-dd, we send n

64 indexed bit pack words of 64 bits each. With 64-bit indices, this results
in 2n total bits. In thrill-bsort, we send substrings and may only pack eight characters
into a 64-bit word (ASCII representation), each of which is extended by an index as well.
Thus, we send n

8 indexed pack words of 64 bits each plus index — 16n bits in total.

The midfield is occupied by thrill-sss-sort. The only traffic it causes is for the stable
sorts due to sss-sort. While the communication of bucket boundaries is negligible on a
gigabyte scale, there is a lot of randomized shuffling of text characters between all of the
nodes with no predictable data locality.

Traffic of MPI implementations. Comparing the traffic of mpi-bsort and mpi-dd, we can
use a similar reasoning as previously for the Thrill counterparts: while we do not need any
indices for communication and traffic is generally lower, the factor of eight between these
two implementations remains because we send substrings instead of bit vectors.

The equivalence of the split texts in mpi-dsplit to the buckets of mpi-bsort is very visible
in the traffic footprints. While mpi-dsplit requires a merge operation after construction
and mpi-bsort does not, there is perfect data locality during construction in mpi-dsplit,
because T 0 or T 1 are guaranteed to stay within the same communicator. This results in
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Figure 16: Average RAM usage per node in the weak scaling experiments.

more fast shared memory traffic that is not counted in the figure. Even though there are
slight differences between the two implementations in terms of caused traffic, it is not really
possible to favor either.

5.3.3 Memory Usage

Figure 16 shows the average per-node memory usage of our implementations in the weak
scaling experiment.

Memory usage of Thrill implementations. We should note that we do not have complete
insight into Thrill’s memory management for DIAs and therefore, we cannot do a very
precise memory analysis of the Thrill implementations. However, thrill-dd is clearly the
least memory efficient implementation for texts with larger alphabets (CommonCrawl

and Wiki). To further analyze this, we take a closer look at the RAM utilization for a
32 GiB prefix of CommonCrawl using 32 nodes in Figure 17.
We observe a peak of RAM utilization shortly after the 25 second mark. At this point, the

local wavelet tree has been constructed and is cached in RAM. We are also performing the
first merge operation, where we use the detour described in section 4.2.1 for concatenation.
At the point during this first merge that resembles the peak, we additionally store indexed
bit vector packs (2n bits) and a temporary DIA of boolean values (8n bits) that we build
from the indexed packs to eliminate alignment bits.
A similar situation arises during thrill-bsort. Here, however, we did not previously com-

pute a node-based representation of the wavelet tree, which explains the reduced memory
usage compared to thrill-dd for texts with a larger alphabet.
Contrary to thrill-dd and thrill-bsort, thrill-sss-sort is very sparse concerning memory

usage. In addition to the input and the already constructed wavelet tree, it only requires
additional memory for the samples and splitters for sss-sort’s distribution phase, as well
as additional memory for local sorting with std::stable_sort.
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Figure 17: CPU and RAM utilization of the first node over time executing thrill-dd for 32 nodes
on a 32 GiB prefix of CommonCrawl. The data has been measured using Thrill’s own
logging features. From the curves, we can estimate the phases of the implementation:
before the 15 second mark, the input is being read from disk so CPU utilization is very
low. Between the 15 and 25 second marks, the local wavelet tree is being constructed,
utilizing the CPU intensively and using an increased amount of RAM over time. After
that, we merge the seven levels of the wavelet tree one by one, causing alternating
periods of CPU utilization and network synchronization.

Memory usage of MPI implementations. Thanks to the very low memory requirements
of pcWT, mpi-dd requires the lowest amount of RAM overall. For the merge operation
after construction, we only need one buffer for packed bit vectors to be transmitted, which
we reuse for each level.
Much like in the traffic analysis, we see that mpi-bsort and mpi-dsplit have an extremely

similar memory footprint because the buckets in mpi-bsort correspond to the split texts T 0

and T 1 in mpi-dsplit. However, mpi-dsplit requires a subsequent merge operation, which
apparently dominates the memory usage for small alphabets: for DNA, we can see clearly
that the difference in RAM usage between mpi-dsplit and mpi-bsort correlates directly to
the memory usage of mpi-dd. We stress here that the merge operation for mpi-dd and
mpi-dsplit are, in fact, the same routine in the implementations.

5.4 Strong Scaling Results

We conduct strong scaling experiments by constructing the wavelet tree for a prefix of fixed
length n = 128 GiB for each input file. Note that the full length of Wiki is slightly less
than 128 GiB, so we process the whole file instead of a prefix. We only vary the number of
nodes used for constructing the wavelet tree (again with 20 processing elements per node)
and perform five iterations of each experiment to measure the same attributes as for our
weak scaling experiments. We present the strong scaling results in Figure 18.

Missing data points. The first observation is that several data points are missing for a low
number of nodes. The respective experiments have been canceled by the operating system
due to RAM limitations. The only MPI implementation that succeeded in all experiments
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Figure 18: Median throughput over five iterations (first row), network traffic (second row) and
average amount of used per-node RAM (third row) of our implementations in the
strong scaling experiments for each input text (columns). Missing data points indicate
failure of all iterations of the respective experiments. Note that Thrill makes use of
external memory and counts it towards RAM usage, so that the RAM usage of Thrill
implementations may exceed the physically available 64 GiB.

is mpi-dd thanks to the low memory profile of pcWT. The Thrill implementations make
use of external memory to some extent in order to cope with RAM limitations.

Furthermore, some data points are missing for thrill-dd on CommonCrawl and Wiki

for 56 and 64 nodes. These experiments failed with memory corruptions for which we could
not find a cause and which seem out of our scope. It should be noted that these issues
disappeared sporadically for some runs. Therefore, since the implementations are in fact
functional (all weak scaling experiments succeeded using the same implementations), we
suppose some sort of misconfiguration related to external memory usage in the cluster.
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5.4 Strong Scaling Results

MPI implementations. Considering the results of the weak scaling experiments, the
MPI implementations behave as expected in the strong scaling experiments: mpi-dd and
mpi-bsort are going head-to-head in terms of throughput, though mpi-dd causes much
less traffic and requires less memory. While mpi-dsplit causes less traffic than mpi-bsort
on larger alphabets and uses roughly the same amount of RAM in all instances, it only
achieves about half as much throughput in all experiments. The strong scaling experiments
also confirm the good scalability of the MPI implementations regarding throughput: going
from 16 to 64 nodes on CommonCrawl, the throughput increases by a factor of 3.7 for
mpi-dd (2.198 GiB /s to 8.084 GiB /s), by a factor of 3.3 for mpi-dsplit (1.200 GiB /s to
3.968 GiB /s) and by a factor of 2.8 for mpi-bsort (2.836 GiB /s to 8.020 GiB /s).

Thrill implementations. Similar to the weak scaling experiments, the overall throughputs
of the Thrill implementations are much lower than those of the MPI implementations. In
the strong scaling experiments, this difference is amplified by the fact that Thrill starts
using external memory as soon as one third of the available RAM is being used. This
threshold is currently fixed in Thrill and the authors explain it by noting that a DIA
consists of three logical layers, which reserve a third of the available RAM each. The use
of external memory, albeit on the local file systems of the respective nodes, naturally slows
down the execution. For better visibility of the Thrill throughputs, we display them on a
different scale in Figure 19.

Despite the overall lower throughput, we note that thrill-dd and thrill-bsort scale very
well for CommonCrawl: going from 24 to 48 nodes, the throughput increases by a
factor of almost precisely two for thrill-dd (approximately 127 MiB /s to approximately
254 MiB /s) and even by a factor of 2.2 for thrill-bsort (approximately 87 MiB /s to ap-
proximately 192 MiB /s).

Even thrill-sss-sort does well to that end, increasing the throughput by a factor of 1.6
(from approximately 170 MiB /s to approximately 268 MiB /s) on CommonCrawl going
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Figure 19: Median throughputs of Figure 18, but only displaying the Thrill implementations.
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5 Practical Evaluation

from 24 to 48 nodes. For DNA, however, where only one stable sort is conducted, we see
that the balancing issues of sss-sort come into effect: only two nodes are responsible for
constructing the entire second bit vector, which results in bad scaling going from 24 nodes
to 48 (factor 1.35 from 0.886 GiB /s to 1.194 GiB /s)
The reason for the sudden rise of thrill-dd ’s throughput at the 64 node mark on Wiki

is unknown, but likely a statistical outlier. We note that only one iteration of the thrill-dd
experiment succeeded for Wiki using 64 nodes. The other four iterations, as well as all it-
erations using 56 nodes, failed with the aforementioned memory corruption for undisclosed
reasons.

5.5 Thrill-Specific Experiments

We conduct further experiments specifically for our Thrill implementations to confirm
(a) the balancing issues of sss-sort regarding wavelet tree construction and (b) that the
detour via ZipWithIndex, Union and Sort operations for concatenation fares better than
Thrill’s generic Concat operation in our use cases. To measure the data presented in this
section, we use Thrill’s own logging functionality that measures data points in fixed time
intervals. This causes a slight overhead in the execution times and was disabled for the
weak and strong scaling experiments.

5.5.1 Super Scalar Sample Sort vs. Bucket Sort

We execute thrill-sss-sort, our implementation to construct the wavelet tree using the stable
sss-sort, with 32 nodes on a 32 GiB prefix of CommonCrawl and log the CPU utilization
and network traffic of the first node (rank 0) and the last node (rank 31) over time in
Figure 20.
The sorting of the text after constructing the first level’s bit vector begins shortly beyond

the 40 second mark. We observe how from here, node 0 has much longer intensive CPU
phases than node 31: after receiving the splitters for item distribution, node 31 sends all
local items away to node 0 and node 1 but does not receive any due to the previously
described unbalance. For that reason, it is practically idling up until shortly after the
70 second mark where the second sort commences. Meanwhile, node 0 needs to locally sort
the received items first.
We noted in section 3.4.1 how the unbalance affects the first dlog pe sort operations. In

this case, we have p = 32 and thus look at the first dlog pe = 5 sorts between 40 and
166 seconds: the intensive CPU phases of node 0 become shorter in logarithmic fashion
while node 31 receives more work only later into the process. Thus, we can confirm the
balancing issues of sss-sort in the face of wavelet tree construction.
For comparison, we conduct the same experiment for our bucket sort implementation

thrill-bsort and show the results in Figure 21. It is clearly visible that thrill-bsort has
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Figure 20: CPU utilization and network traffic of node 0 (upper chart) and node 31 (lower chart)
thrill-sss-sort using 32 nodes on a 32 GiB prefix of CommonCrawl.
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Figure 21: CPU utilization and network traffic of node 0 (upper chart) and node 31 (lower chart)
thrill-bsort using 32 nodes on a 32 GiB prefix of CommonCrawl.
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better load balancing properties, making intensive use of the CPU on the observed nodes.
However, as also seen in the weak and strong scaling experiments, thrill-bsort takes longer
overall than thrill-sss-sort in most instances (without regarding the initial phases with very
low CPU utilization, where the input is being read from disk). The factor that comes into
play here is that thrill-bsort requires concatenations, which we already identified to be a
heavy operation in Thrill that we solve ultimate by sorting. In contrast, thrill-sss-sort only
sorts the text without filling buckets first.

We conclude that thrill-sss-sort is the faster implementation overall despite the load
balancing issues of sss-sort, but because of the load balancing issues, it has worse scaling
properties than thrill-bsort, as evidenced in our scaling experiments.

5.5.2 Concatenation

In order to endorse the alternative concatenation method presented in section 4.2.1 that
we use for our Thrill implementations, we execute two variants of thrill-dd (domain de-
composition) using 32 nodes on a 32 GiB prefix of CommonCrawl and compare the CPU
utilization and network traffic over time during the wavelet tree merging. The first variant

20 40 60 80 100 120 140 160

0

50

100

C
P
U

ut
ili
za
ti
on

[%
]

thrill-dd – Concat

0

50

100

N
et
w
or
k
tr
affi

c
[M

iB
/s
]

50 60 70 80 90 100 110 120 130 140 150 160

20

40

60

80

100

Time [s]

C
P
U

ut
ili
za
ti
on

[%
]

thrill-dd – ZipWithIndex, Union, Sort

0

100

200

N
et
w
or
k
tr
affi

c
[M

iB
/s
]

UnionSort UnionSort

Figure 22: CPU utilization and network traffic of the first node for two variants of thrill-dd using
32 nodes on a 32 GiB prefix of CommonCrawl. For the upper chart, we used Thrill’s
Concat operation and in the lower chart, we use the detour via ZipWithIndex, Union
and Sort. For a fair comparison of running times, we adjust the x-axis so that both
curves start at the point where the merging of local wavelet trees into the global
wavelet tree commences (at about 20 seconds for Concat and at about 50 seconds for
the alternative approach).
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uses Thrill’s generic Concat operation and the second variant does the alleged detour via
ZipWithIndex, Union and Sort. The results are shown in Figure 22.
We note that the merge using our alternative concatenation is more than twice as fast

as the generic concatenation using Thrill’s Concat operation. Concat requires long phases
of communication in order to collect the information that the alternative concatenation
gets for free thanks to our precomputed wavelet tree structure, which we use to reduce the
problem to sorting. The authors of Thrill also presume that the randomized communication
of Sort allows for better utilization of the network, transmitting data between multiple
nodes simultaneously while Concat follows a linear communication pattern in the order
of node ranks. Regardless, this experiment confirms our claim from section 4.2.1 that the
alleged detour to achieve concatenation results in faster processing overall.

5.6 Summary

Our scaling experiments show that most of our implementations have good scaling proper-
ties. The domain decomposition algorithms, implemented in mpi-dd and thrill-dd, achieve
the overall best scaling results where doubling the number of nodes also nearly doubles
their throughput.
The MPI implementation of the domain decomposition algorithm, mpi-dd, not only

achieves the highest overall throughputs of all implementations (along with mpi-bsort in
most experiments), but it also causes the least amount of network traffic and requires the
lowest amount of memory.
The Thrill implementations achieve lower throughputs overall than the MPI implementa-

tions due to the way that bit vectors and strings are concatenated. Despite thrill-sss-sort
being faster in most experiments than thrill-bsort, its scaling properties are the worst
among our implementations because of the balancing issues arising from sss-sort with a
low number of sort keys.
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6 Construction of Wavelet Trees vs.
Wavelet Matrices

In this chapter, we take a step away from distributed computing to get some theoretical
insight into the construction of wavelet trees and wavelet matrices. More specifically, we
continue the research of Fischer et al. [10] on the topic of whether construction algorithms
for the wavelet tree and the wavelet matrix can be modified efficiently to construct the
other data structure, respectively.

Wavelet matrix. The wavelet matrix can be thought of as an alternative representation
of the wavelet tree. In the wavelet tree, in order to retrieve the bit vector BT

` for level
`, we concatenate the bit vectors of the single nodes on that level from left to right. In
the wavelet matrix, the nodes are concatenated in a different order to obtain bit vector
BM
` : all left children of their respective parents are moved to the left and all right children

of their respective parents are moved to the right [24, Ch. 6.2.5]. Figure 23 shows an
example. This re-ordering corresponds to the bit-reversal permutation of the node ranks
on the respective level [10].

Bit reversal. For any string S, let SR denote its reversal. For a bit string B ∈ B∗, let
(B)N ∈ N denote the integer that B is the binary representation of. For k > 0 and an
integer i < 2k, we call (i)B,k ∈ Bk the k-bit binary representation of i.

1 0 1 0 0 0 1 1 0 0 0

0 0 1 0 1 0 0

0 1 1 1 1 0 1

1 0 0 0

1 0 0 0

1 0 1 0 0 0 1 1 0 0 0

0 0 1 0 1 0 0 1 0 0 0

0 1 1 1 1 1 0 0 0 1 0
0 1 2 3 0 2 1 3

Figure 23: Comparison of the node ordering in the wavelet tree (left) and the wavelet matrix
(right). Due to the nature of the bit reversal permutation, the ordering on the first
two levels remains the same in the wavelet matrix. On the third level, we observe
how nodes 0 and 2 (left children of their respective parents) go to the left part of the
corresponding wavelet matrix bit vector and nodes 1 and 3 (right children of their
respective parents) go to the right.
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6 Construction of Wavelet Trees vs. Wavelet Matrices

i (i)B,2 ((i)B,2)R bitrev2(i)

0 00 00 0
1 01 10 2
2 10 01 1
3 11 11 3

(a) Bit-reversal permutation for k = 2.

i (i)B,3 ((i)B,3)R bitrev3(i)

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

(b) Bit-reversal permutation for k = 3.

Table 7: Breakdowns of the bit-reversal permutations for k = 2 (left) and k = 3 (right). The first
column contains the integers i < 2k, the second shows their k-bit binary representations,
the third shows the reversals and the final column contains the k-bit reversal of i.

We define the k-bit reversal bitrevk(i) := (((i)B,k)
R)N as the integer represented by the

reversal of i’s k-bit binary representation. For a fixed k, the bit-reversal permutation maps
each integer i < 2k to its k-bit reversal. To give examples, Table 7 shows the bit-reversal
permutations for k = 2 and k = 3.

Wavelet tree vs. wavelet matrix construction. The wavelet matrix can be used to answer
the same queries as the wavelet tree in the same asymptotic time. However, its relevance
in practice stems from the fact that a lower constant number of rank and select queries is
required to answer those queries, apart from other storage-related advantages that we will
not regard here any further.

We are interested in how a construction algorithm for either data structure (wavelet tree
or matrix) can be modified efficiently to construct the other, i.e., without worsening any
of the present asymptotic time and space boundaries. Fischer et al. [10] show that there
is a data structure that can be used to efficiently transform any construction algorithm
for the wavelet tree to construct instead the wavelet matrix. However, it was not known
whether an efficient transformation in the inverse direction exists, i.e., whether there is an
efficient way to construct the wavelet tree using a construction algorithm for the wavelet
matrix. In this chapter, we propose a solution to this problem, albeit with a limitation.

6.1 Problem Definition

Formally, let us consider the situation where, during the construction of the wavelet tree,
the i-th bit is set in bit vector BT

` of level ` of the wavelet tree (assuming, without loss
of generality, a level-wise representation). Fischer et al. [10] present a data structure to
efficiently compute a function f : (`, i) 7→ (`, j) so that j is the corresponding position
for the bit to be set in bit vector BM

` of the wavelet matrix. For input length n and
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alphabet size σ, their data structure occupies n+ σ + (σ + 2)dlog ne bits of space and can
be constructed in time O(n+ σ) using o(n+ σ) bits of memory.
In this chapter, we describe a data structure that computes function f−1, which maps

(`, j) back to (`, i) with the same asymptotic time and space boundaries as f . Before we
proceed there, we observe various properties of the wavelet tree that lead to a similar result
for f as that of Fischer et al.. This will help us develop the novel data structure.

6.2 Locating Nodes and Bit Offsets

As previously mentioned, the re-ordering of nodes between the wavelet tree and matrix can
be described by the bit-reversal permutation. This knowledge makes it easy to translate
a node ID (the node’s BFS rank) between the two data structures. Based on that, we
employ the following strategy to find data structures for functions f and f−1: given the
level and position of the bit to be written, we attempt to find (a) the ID of the node that
the bit belongs to and (b) the position of the node’s first bit in the level bit vector. With
this information available, we are going to see that both f and f−1 are easy to compute
in constant time.

Bottom level node sizes. In section 2.2.1, we described the relation between the C array
and the sizes of the wavelet tree’s nodes. This relation is especially interesting regarding
the virtual bottom-most level h = dlog σe of a full binary wavelet tree. We call this level
virtual, because all bits on it would be zero and we never actually store it. On this level,
each node corresponds to a single symbol from the input alphabet. Let node vc on level h
correspond to symbol c ∈ [0, σ). We have |Bvc | = C[c+ 1]−C[c] = occTeff(c), which means
that the size of vc matches the number of occurrences of c.
In order to use this property, the wavelet tree must be a full binary tree: if it was not,

there would be leaves on level h − 1 and not all nodes on level h would exist. Therefore,
without loss of generality, let us assume from now on that σ = 2h for some integral h > 0,
i.e., that the alphabet size is a power of two. Then, the wavelet tree is a full binary tree.
In case σ is not a power of two, we introduce artificial symbols that never occur in the
input and are lexicographically larger than all symbols that do occur in the input. This
way, the empty nodes for these symbols are moved to the far right of the wavelet tree and
can be ignored in the following.

6.2.1 Wavelet Tree

We consider the situation where a wavelet tree constructor sets the i-th of bit vector BT
` .

Let v(`, i) be the rank of the wavelet tree node on level ` to which the i-th bit belongs.
We represent v(`, i) relative to the number of the first node on level `, i.e., v(`, 0) = 0 and
v(`, n− 1) = 2` − 1. This representation requires ` bits, because there are precisely 2` − 1
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6 Construction of Wavelet Trees vs. Wavelet Matrices

a e l r t v w >
c 0 1 2 3 4 5 6 7

occT (c) 1 4 1 1 2 1 1 0
C[c] 0 1 5 6 7 9 10 11 11

Figure 24: The histogram and the C array for T = wavelettree. We added the artificial symbol
> so σ = 8 is a power of two. The new symbol never occurs in T and is lexicographi-
cally larger than the other symbols.

nodes on level `. Furthermore, let p(`, v) be the position of the first bit in BT
` that belongs

to node v and let

δv(`, i) := i− p(`, v(`, i))

be the distance of i from that position.

We take a closer look at v and p on the virtual level h and observe that v(h, i) =

min{x | C[x] > i} − 1. This is because each node on this level corresponds to precisely
one symbol from the input alphabet and the C array encodes, for every c, the number
of symbols in the input that are lexicographically smaller than c. This corresponds to
the accumulated sizes of the node’s left siblings. An example of this relation can be seen
comparing Figure 24 and Figure 25b (in row ` = 3). The node that i belongs to on level h
is left of the first node whose accumulated size — its entry in the C array — exceeds i. We
can immediately conclude that the first bit that belongs to node v is located at position
p(h, v) = C[v].

How do v and p on level h relate to those on the other levels ` < h that we are actually
interested in? To answer this, we make use of the fact that the wavelet tree is a full binary

0 1 2 3 4 5 6 7 8 9 10

w a v e l e t t r e e

a e l e r e e w v t t

a e e e e l r v t t w

a e e e e l r t t v w

1 1 0 0 0 1 1 1 0 1 1

` = 0:

` = 1:

` = 2:

` = 3:

BC :

(a) The text re-ordering on each level and
the bit vector BC . The vertical lines
mark the boundaries of the wavelet
tree’s nodes.

11

7

5

1 5

7

6 7

11

10

9 10

11

11 11 ` = 0

` = 1

` = 2

` = 3

(b) The accumulated sizes of each of the
wavelet tree’s nodes. Note that the
rightmost node on the bottom level cor-
responds to our artificial symbol > from
Figure 24.

Figure 25: Display of the wavelet tree’s text re-ordering on each level, including the virtual level
h = 3, the bit vector BC and the accumulated node sizes for our running example
text T = wavelettree.
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6.2 Locating Nodes and Bit Offsets

tree: the size of a node equals the sum of its children’s sizes. This is because the children
partition the alphabet interval of a node. As a consequence, the accumulated size of any
node is retained in its right child, as can be seen in Figure 25b. Since the C array encodes
the accumulated sizes of the nodes on level h, it also implicitly encodes the accumulated
sizes of all nodes on levels ` < h. Following this notion, we can conclude the following
relations:

v(`, i) =

⌊
min{x | C[x] > i} − 1

2h−`

⌋
and

p(`, v) = C[v · 2h−`]. (6.1)

The array C is stored in ascending order, so the minimum query required to find v

could be answered in time O(log σ) using binary search. However, we seek a computation
in constant time. We construct the bit vector BC of length n by setting BC [k] := 1 if
C[c] = k − 1 for some c and BC [k] := 0 otherwise and prepare it for constant-time rank
queries. This can be done in time O(n) and requires n+ o(n) bits of additional space (see
section 2.1.3). In BC , we practically mark the node boundaries on level h of the wavelet
tree. See Figure 25a for an example. We can now compute

v(`, i) =

⌊
rank1(BC , i)− 1

2h−`

⌋
(6.2)

in constant time.

We now know that the i-th bit in BT
` corresponds to the (δv)-th bit in the v-th node on

level ` in the wavelet tree. We can compute v, p and δv in constant time using the array
C and rank-enhanced bit vector BC , which together occupy σdlog ne+ n(1 + o(1)) bits of
space. Asymptotically, this space boundary matches that of the data structure presented
by Fischer et al. [10].

Example 1. Figure 25, in combination with Figure 24, shows an example of the data
structure for T = wavelettree. Assume that we are interested in locating the node for bit
i = 9 on level ` = 2. With Equation 6.2, we get v(2, 9) =

⌊
rank1(BC ,9)−1

23−2

⌋
=
⌊

5
2

⌋
= 2. This

means that the bit belongs to the third node on level 2 (because we start counting at zero).
Furthermore, with Equation 6.1, we get p(2, 2) = C[2 · 23−2] = C[4] = 7. This means that
the third node on level 2 starts at position 7. Finally, it is δv(2, 9) = 9−p(2, 2) = 9−7 = 2,
so bit 9 on level 2 ultimately corresponds to the third bit of the third node on that level.
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6 Construction of Wavelet Trees vs. Wavelet Matrices

6.2.2 Wavelet Matrix

Given the observations in section 6.2.1, it is natural to ask how a similar locating can be
done for the wavelet matrix. As described previously, its bit vector BM

` can be viewn as
the concatenation of the wavelet tree nodes on level ` in bit-reverse order. To that regard,
the wavelet matrix can be represented as a tree just as well with the nodes re-ordered
accordingly. Even though there are no practical advantages of storing the wavelet matrix
as a tree, this notion will help us find an efficient data structure for computing f and f−1.

We consider the situation where a wavelet matrix constructor sets the j-th bit of bit
vector BM

` of the wavelet matrix and are interested in the node to which this bit belongs.
Analogously to v, p and δv in the previous section, we define u(`, j), q(`, u) and δu(`, j) :=

j − q(`, u(`, i)) as the node into which the written bit belongs, the position of the node’s
first bit in BM

` and the distance of j from the node’s first bit, respectively.

Due to the re-ordering of the nodes, the correspondences between their accumulated
sizes and the C array, which we observed for the wavelet tree, are no longer valid for the
wavelet matrix. As a consequence, we need to find a different way to compute u and q.

We make use of the following observation to find u: in either the wavelet tree or the
wavelet matrix, all occurrences of a symbol c ∈ [0, σ) belong to the same node on any level.
Since this is also true for level h, in order to find the node to which any occurrence of c
belongs on level h, it suffices to know to which node the first occurrence of c belongs. This
first occurrence of c on level h is always located at position C[c]. As seen previously, once
the node for level h is known, it is easy to narrow it down to any level ` < h. Of course,
we then have the node in the wavelet tree, but in the wavelet matrix, the nodes are simply
permuted in bit-reverse order. Let c be the symbol from which we computed the bit that
we are setting in BM

` . If c is known when the bit is being set13, we can express

u(`, j, c) = bitrev`(v(`, C[c])). (6.3)

It remains to compute q. As stated above, the C array cannot be used directly to
compute the accumulated node sizes for the wavelet matrix, because nodes are permuted.
However, the node sizes themselves remain the same and thus, with awareness of the bit-
reversal ordering of nodes on every level, it is easy to precompute the accumulated node
sizes for all nodes of the wavelet matrix using the C array in time O(σ). Since we are
dealing with a full binary tree of height h = log σ, the accumulated wavelet matrix node
sizes can be stored in an array C ′ of length 2h − 1 = σ − 1 (since σ is a power of two),
occupying (σ − 1)dlog ne bits of space. Figure 26b shows an example. We consider C ′ a

13We address the consequences of this requirement in section 6.3.
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Figure 26: Display of the wavelet matrix’s text re-ordering on each level for running example text
T = wavelettree.

set of arrays C ′` for each level `, so that the first entry of C ′` contains the size of the first
node on level `. Then, q can be determined in a very simple way:

q(`, u) =

0 if u = 0.

C ′`[u− 1] if u > 0.
(6.4)

We then know that the j-th bit in BM
` of the wavelet matrix corresponds to the δu-th

bit in the u-th node’s bit vector on level `. We can compute u, q and δu in constant
time using the arrays C and C ′ and rank-enhanced bit vector BC , which, in total, occupy
(2σ − 1)dlog ne+ n(1 + o(1)) bits of space.

Example 2. Figure 26, in combination with Figure 25 and Figure 24, shows an example
for the data structure for T = wavelettree. Assume that we are interested in locating
the node for bit j = 9 on level ` = 2 of the wavelet matrix. The symbol for which
the bit is written is c = r (see Figure 26a). With Equation 6.3, we get u(2, 9, r) =

bitrev3(v(2, C[r])) = bitrev3(v(2, 6)) = bitrev2(1) = 2. This means that the bit belongs to
the third node on level 2. Furthermore, with Equation 6.4, we get q(2, 2) = C ′2[2− 1] = 8.
This means that the third node on level 2 starts at position 8. Finally, it is δu(2, 9) =

9− 8 = 1, so bit 9 on level 2 ultimately corresponds to the second bit of the third node on
that level.
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6.3 Converting Between Wavelet Tree and Wavelet Matrix

Construction

Using the locating data structures described above, we can express functions f and f−1 as
follows:

f(`, i) = q(`, bitrev`(v(`, i))) + δv(`, i),

f−1(`, j) = p(`, bitrev`(u(`, j, c))) + δu(`, j, c).

Both f and f−1 can be computed in constant time using the arrays C, C ′ and rank-
enhanced bit vector BC . These occupy σdlog ne + (2σ − 1)dlog ne + n(1 + o(1)) bits of
space can be constructed in time O(σ + n).
We impose the restriction that for f−1, the symbol c, for which a bit is being set in BM

` ,
has to be known when setting the bit. Even though this bit must ultimately have been
computed from c, there are construction algorithms for the wavelet tree that redistribute
the bits of c before constructing the bit vectors [1, 17, 22, 34]. Due to the existence of our
function f alone, such techniques may as well be used for the construction of the wavelet
matrix. In this case, c is not known when setting the bit in question and f−1 cannot be
used.
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7 Conclusion

In this thesis, we reached the goal of developing the first distributed algorithms for the
construction of wavelet trees. We implemented these algorithms against Thrill and MPI
and performed a practical evaluation constructing wavelet trees for large inputs. In this
concluding chapter, we summarize the insights we gained and give an outlook for possible
future research topics.

7.1 Insights

Distributed computing is a practicable option for constructing wavelet trees for large texts.
We conclude so following the evaluation of the weak and strong scaling experiments of
chapter 5.

The approach that works best overall is the domain decomposition, where we partition
the input and distribute it evenly across the available processing elements. Each processing
element constructs an entire wavelet tree for their local part of the input. In a subsequent
step, the local wavelet trees are merged to form the wavelet tree of the entire input. This
approach minimizes the amount of necessary communication both in theory (as analyzed
in chapter 3) and in practice (see chapter 5). It is independent of the algorithm used
for local wavelet tree construction on each processing element and thus allows for making
use of any future advancements regarding the sequential or parallel (multi-core, shared
memory) wavelet tree construction. For our implementation, we use the fastest known
practical algorithm pcWT due to Fischer et al. [10] for sequential wavelet tree construction,
which, thanks to its low memory profile, allows us to process large inputs with only few
processing elements. In the strong scaling experiments conducted in chapter 5, we observed
near-perfect scalability with an increasing number of nodes used.

Balancing concatenation. We observe that a key operation required for the distributed
construction of wavelet trees is the balancing concatenation of distributed sequences. All
distributed approaches analyzed in chapter 3 require an operation where a sequence of bits
or symbols, distributed over the available processing elements, are concatenated so that
each processing element maintains an equal number of items of the concatenation with the
goal of load balancing.
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Thanks to the fact that we can precompute the structure of the wavelet tree in negligible
time using just the input’s histogram, the balancing concatenations in our scenarios can be
realized easily using one prefix sum computation per concatenation to determine recipients
for each of the items in the sequence.

Thrill and distributed wavelet tree construction. For Thrill, the concatenations pose a
problem due to its concept of distributed immutable arrays that abstract from the locality
of their items. This requires us to use a detour via sorting in order to avoid a costly generic
concatenation that cannot make use of our precomputed information. While Thrill excels
in some areas of distributed computing (e.g., k-means clustering or page rank computa-
tions [3]), our practical evaluation hints that it is not very suitable for the distributed
construction of wavelet trees.

However, thanks to Thrill’s high-level API and its large set of tools provided out of the
box, we could design and implement the first working distributed wavelet tree construction
algorithm (thrill-dd) in a very short time compared to our MPI implementations. Further-
more, in early evaluations of just the Thrill implementations, it already became visible
that the domain decomposition is probably the best approach to go with. To that regard,
even in areas where Thrill’s design may not be inherently suitable to solve the problem at
hand, it provides a solid, easy to learn toolset for quick sketching of distributed algorithms
and preliminary evaluations.

Wavelet trees and wavelet matrices. In chapter 6, we went a step back from distributed
computing and attempted to solve an open theoretical problem concerning wavelet trees
and wavelet matrices. We described a data structure that can be used to extend a construc-
tion algorithm for the wavelet matrix to construct instead the wavelet tree with constant
time overhead. We can construct this data structure in time O(σ+n) time and it requires
O(σ log n + n) bits of memory, matching the asymptotic time and space requirements of
the data structure described by Fischer et al. [10] for the inverse direction (transform-
ing wavelet tree construction into wavelet matrix construction). However, we impose a
restriction for our data structure that makes it unsuitable for a class of wavelet matrix
construction algorithms that do not keep the entire binary representation of the input
symbols when computing the bit vectors.

7.2 Outlook

We conclude the thesis by giving an outlook for potential future work on related topics.

Alternative wavelet tree representations. We provided algorithms to construct the lev-
elwise representation of the original wavelet tree described by Grossi et al. [13]. However,
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they also describe an entropy-compressed variant of the wavelet tree, the Huffman-shaped
wavelet tree. In this representation, the bits on the path to a symbol’s leaf represent
its Huffman code [15] rather than its dlog σe-bit binary representation. This causes the
wavelet tree to adopt the shape of the Huffman tree for the input text. Furthermore, the
wavelet matrix, briefly described in chapter 6, is a different representation of the wavelet
tree where the nodes are re-ordered according the bit-reversal permutation on each level.
This is of practical use as it allows for queries to be answered using less rank and select
queries on the bit vectors compared to the wavelet tree. A variant of the wavelet matrix
uses canonical Huffman codes in order to achieve an entropy-compressed representation
similar to Huffman-shaped wavelet trees.
In future work, one could extend upon the distributed wavelet tree construction algo-

rithms developed in this thesis to construct these practically more relevant representations.

Answering queries. Another interesting topic is how the queries supported by the wavelet
tree and matrix (e.g., rank, select and access) can be answered efficiently in a distributed
setting. This would be substantial for a distributed FM index [8].

Extending Thrill. Thrill provides a solid and very helpful toolset for quickly sketching
and implementing practically functional distributed algorithms. However, we saw some
difficulties in the scenario of constructing wavelet trees. To make Thrill more suitable for
wavelet tree construction, one could extend it by a specialized concatenation operation that
can make proper use of precomputed information such as the wavelet tree structure. It is
conceivable that such an operation may be useful in other scenarios as well. Furthermore,
the lack of support for bit DIAs requires us to use temporary DIAs of boolean values in
order to get rid of alignment bits after concatenation. Each boolean value, which in theory
only requires one bit, is byte-aligned in practice and thus takes up eight bits, causing a
spike in memory usage where seven bits per item are wasted. To that regard, actual bit
DIAs would be a useful addition to Thrill.

Lifting restrictions of the WT / WM constructor transformation. Finally, the theo-
retical problem of how to efficiently transform a wavelet matrix construction algorithm
to construct instead the wavelet tree has been solved in this thesis only by imposing the
restriction that the wavelet matrix constructor requires the entire binary representation of
a symbol when writing a bit. It is still open whether this restriction can be lifted without
worsening the asymptotic time and space boundaries of our data structure.
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