Bit-Parallel (Compressed)
Wavelet Tree Construction

Patrick Johannes Florian Jan-Philipp
Dinklage Fischer Kurpicz Tarnowski
g%cr?rr%ijgge universitat ée;cr?:mijgge universitat *‘(IT crownpeak
rrrrrrrrrrrrrr itut fiir Technologie technische universitat

dortmund

Wavelet Trees

[wavelet tree }

Char Code
: 000
a 001
e 010
1 011
r 100
t 101
\Y 110

W 111

Wavelet Trees

level 1 [wavelet tree }

(most significant bits) 1910001011090 Char Code
: 000
a 001
e 010
1 011
r 100
t 101
\Y 110

W 111

Wavelet Trees

level 1 [wavelet tree }
(most significant bits) 1910001011090 Char Code
: 000
a 001
aele ee wvttr e 010
e
r 100
t 101
\Y 110

W 111

Wavelet Trees

level 1 [wavelet tree }
(most significant bits) 1910001011090 Char Code
_ 000
a 001
level 2 [aele ee J [wvttr } e 010
(second bits) 9111011 11000 1 011
r 100
t 101

level 3 a_ eleee ttr Y, Vv 110
(third bits) 10 01000 110 10 N 111

Wavelet Trees

level 1 [wavelet tree }
(most significant bits) 1910001011090 Char Code
_ 000
a 001
level 2 [aele ee J [wvttr } e 010
(second bits) 9111011 11000 1 011
r 100
t 101
level 3 a_ [eleee J[ttr J Y, Vv 110
(third bits) 10 01000 110 10 N 111

- [lg o Ilevels, n bits per level

Wavelet Trees

Char Code
level 1
(most significant bits) [101000101100 } _ 000
a 001
jovel 2 0111011 11000 S
(second bits) 1 011
r 100
t 1901
level 3 10 01000 110 10
(third bits) Y 110
W 111

> we only store the bits, text remains decodable

Wavelet Trees

level 1 Char Code
eve
(most significant bits) [101000101100 } _ 000
a 001
level 2 € 910
(second bits) 9111011 11000 1 011
r 100
level 3 t 1ol
(third bits) 16 01600 116 10 v 110

W 111

Wavelet Trees

level 1 Char Code
eve
(most significant bits) [101000101100 } _ 000
a 001
level 2 € 910
(second bits) 9111011 11000 1 011
r 100
level 3 t 1ol
(third bits) 16 01600 116 10 v 110
W 111

-> levelwise (pointerless) representation fits in [lg o I(n+o(n)) bits
(tree structure is retained implicity)

Wavelet Trees

level 1 Char Code
eve
(most significant bits) [101000101100 } _ 000
a 001
level 2 € 910
(second bits) 9111011 11000 1 011
r 100
level 3 t 1ol
(third bits) 16 01600 116 10 v 110
W 111

-> levelwise (pointerless) representation fits in [lg o I(n+o(n)) bits
(tree structure is retained implicity)

=> applications in compressed text indexing (e.g., FM-Index)

Wavelet Tree Construction

Construction algorithm Time bound (seq.)

text book
prefix counting [D. et al., 2022] O(nlgo)

Wavelet Tree Construction

Construction algorithm Time bound (seq.)
text book
prefix counting [D. et al., 2022] O(nlgo)

[Babenko et al., 2014]

[Munro et al., 2014] O(nlgo/+/lgn
[Kaneta, 2018] (© / ¥)

Wavelet Tree Construction

Construction algorithm Time bound (seq.)
text book
prefix counting [D. et al., 2022] O(nlgo)

[Babenko et al., 2014]

[Munro et al., 2014] O(nlgo/+/lgn
[Kaneta, 2018] (© / ¥)

This work:
1. Does Kaneta’s algorithm scale with the register size (AVX-512)7?

Wavelet Tree Construction

Construction algorithm Time bound (seq.)
text book
prefix counting [D. et al., 2022] O(nlgo)

[Babenko et al., 2014]

[Munro et al., 2014] O(nlgo/+/lgn
[Kaneta, 2018] (© / ¥)

This work:
1. Does Kaneta’s algorithm scale with the register size (AVX-512)7?
2. Can it be adapted to build Huffman-shaped (compressed) wavelet trees?

Fast Levelwise Construction

(assuming a byte alphabet of size o =256)

B C D A

0100 0001 | 1010 0110 | 1101 0110 | 60011 11160

Fast Levelwise Construction

(assuming a byte alphabet of size o =256)

T =55 aas B C D S
0100 0001 | 1010 0110 | 1101 0110 | @011 1110

-> we build a 2%-ary levelwise wavelet tree (ex.: 7 =4)

[... B C D A }
0100 1@1@ 11@1 0011

- [lg o I/t levels

Fast Levelwise Construction

(we build a 2*-ary levelwise wavelet tree (ex.: 7=4))

[... B C D A]
0100 1@1@ 1191 0011

Fast Levelwise Construction

(we build a 2*-ary levelwise wavelet tree (ex.: 7=4))

[... B C D A J
0100 1@1@ 11@1 0011

\&) clusters of 7 levels of the (binary) wavelet tree

(array of z-bit blocks)

Fast Levelwise Construction

(we build a 2*-ary levelwise wavelet tree (ex.: 7=4))

[... B C D A]
0100 1@1@ 1191 0011

&) clusters of 7 levels of the (binary) wavelet tree

(array of z-bit blocks)

=> Grand strategy: expand a cluster to 7 bit vectors in time On)

Fast Levelwise Construction

(we build a 2*-ary levelwise wavelet tree (ex.: 7=4))

[... B C D A }
0100 1@1@ 11@1 0011

‘&) clusters of 7 levels of the (binary) wavelet tree

(array of z-bit blocks)

=> Grand strategy: expand a cluster to 7 bit vectors in time On)

-> then, for all [lg o Iz clusters, the total construction time becomes O(n Ig ¢/7)

(r == /Ign)

Fast Levelwise Construction

2a
2b

our steps for each cluster:

Step

Cluster Extraction

T passes

- Bit Extraction
- List Splitting
Text Reshuffling

Running time

O(n)

On©/lg n) = O(n)

O(n)

O(nt/lg n)
O(nt/lg n)

(7:

Vign)

Cluster Extraction

-> extract the relevant block of t bits from each character
to a word-packed list S

Cluster Extraction

-> extract the relevant block of t bits from each character
to a word-packed list S

B
0100 0001

J

C

1010 0110 | 1101 0110 | @011 1110

////

...... 01600

1101

@@11 ------

.

J

~

computer word (ex.: w= Q(lg n) = 16 bits)

Cluster Extraction

-> extract the relevant block of t bits from each character
to a word-packed list S

B
0100 0001

C D A

J 1010 0110 | 1101 0110 | @011 1110

/////

...... 01600

1010

1101

@@11 ------

.

J

'
computer word (ex.: w= Q(lg n) = 16 bits)

=> left-to-right scan of T'in time O(n) /

Fast Levelwise Construction

2a
2b

steps for each cluster:

Step

Cluster Extraction

T passes

- Bit Extraction
- List Splitting
Text Reshuffling

Running time

O(n)

On©/lg n) = O(n)

O(n)

O(nt/lg n)
O(nt/lg n)

(7:

Vign)

Word Packing

computer word (ex.: w= Q(lg n) = 16 bits)

AN
4 A

EEEEEE 0100 1101 | 0011 [+ * =+ >

=> we pack w/z blocks into a word / S consists of nz/w words

Word Packing

computer word (ex.: w= Q(lg n) = 16 bits)

-

~

S 0100

1101

0011

=> we pack w/z blocks into a word / S consists of nz/w words

=> if processing one word takes constant time,
then processing S takes time Omw/w)

Word Packing

computer word (ex.: w= Q(lg n) = 16 bits)

-

~

S 0100

1101

0011

=> we pack w/z blocks into a word / S consists of nz/w words

=> if processing one word takes constant time,
then processing S takes time Omw/w)

-> we will do 7 passes over §, each pass taking time O(nt/w) = O(nt/lg n)

Bit Extraction

computer word (ex.: w = 16 bits)

AN
4 A

""" 0100 | 1010 | 1101 | 66011 |- == = " *

Bit Extraction

computer word (ex.: w = 16 bits)

AN

-

N

0100

10160

1101

0011

1000

1000

1000

1000

-> the mask M marks what bits to
extract from a word

Bit Extraction

computer word (ex.: w = 16 bits)

AN
4 A
---- 0100 1101 | 0011
1000 | 1000 @ 1000 | 1000

-> the mask M marks what bits to
extract from a word

=> in pass ¢, we set the #-th bit
of each block

-> this gives us the bits for level ar+¢
of the wavelet tree

Bit Extraction

computer word (ex.: w = 16 bits)

AN
4 A
------ 0100 1101 | 0011
1000 1000 @ 1000 @ 1000
pext
...... 9110 |= = = = = =

-> the mask M marks what bits to
extract from a word

=> in pass ¢, we set the #-th bit
of each block

-> this gives us the bits for level ar+¢
of the wavelet tree

Bit Extraction

computer word (ex.: w = 16 bits)

AN
4 A
=+ 10100 1101 | 0011
1000 1000 @ 1000 @ 1000
pext
40110 |= = = = = =

-> the mask M marks what bits to
extract from a word

=> in pass ¢, we set the #-th bit
of each block

-> this gives us the bits for level ar+¢
of the wavelet tree

=> using lookup tables, this can be done in constant time per word
(in practice, we use the pext CPU instruction®)

Fast Levelwise Construction

2a
2b

steps for each cluster:

Step

Cluster Extraction

T passes

- Bit Extraction
- List Splitting
Text Reshuffling

Running time

O(n)

On©/lg n) = O(n)

O(n)

O(nt/lg n)
O(nt/lg n)

(7:

Vign)

List Splitting

recall how the text is “split” at a wavelet tree node

[wavelet tree }

101000101100
chars with a 0-bit chars with a 1-bit
are moved left are moved right
aele ee wvttr
HHHHHHH HHHHH

—> we need to simulate this on S after every pass

List Splitting

recall how the text is “split” at a wavelet tree node

[wavelet tree }

101000101100
chars with a 0-bit chars with a 1-bit
are moved left are moved right
aele ee wvttr
HHHHHHH HHHHH

- the border position equals the number of chars with a 0-bit

List Splitting

recall how the text is “split” at a wavelet tree node

[wavelet tree }

101000101100
chars with a 0-bit chars with a 1-bit
are moved left are moved right
aele ee wvttr
HHHHHHH HHHHH

- the border position equals the number of chars with a 0-bit

=> important: counting 0-bits must be done in constant time per word! (popcount)

List Splitting

computer word (ex.: w = 16 bits)

AN

-

~

0100

10160

1101

0011

0110

List Splitting

computer word (ex.: w = 16 bits)

A
4 N
""" 10100 | 1010 | 1101 | 06011 | == """
0000 | 1111 | 1111 | 0000 PEEEEE S
. N .. - ottt “'
~~~~~:::::::::::;::::::=a.'-"'"'

—> we expand the extracted bits to M/
(e.g., using lookup tables)



List Splitting

computer word (ex.: w = 16 bits)

A
4 A

""" 10100 | 1010 | 1101 | 6011 |- = =" - -

..... 10110 |= === ==

-————_=----——

—> we expand the extracted bits to M/
(e.g., using lookup tables)

1010 | 1101 > """




List Splitting

computer word (ex.: w = 16 bits)

A
4 A

""" 10100 | 1010 | 1101 | 6011 |- = =" - -

..... 10110 |= === ==

—> we expand the extracted bits to M/
(flip bits for left child)

---- 1 0100 | 0011

1010 | 1101 > """




List Splitting

computer word (ex.: w = 16 bits)

A
/’ ™
EEREE 10100 | 1010 | 1101 | @011 |- = - - - -
M 1111 | 0000 | P00 | 1111 PREERRER 0110 |+ *» = = »

pex -> we expand the extracted bits to M
(flip bits for left child)

S 1 0100 | 0011

1010 | 1101 | » ="+ "

=> using pext* twice, we do the desired splitting in constant time per word /



Fast Levelwise Construction

2a
2b

steps for each cluster:

Step

Cluster Extraction

T passes

- Bit Extraction
- List Splitting
Text Reshuffling

Running time

O(n)

On©/lg n) = O(n)

O(n)

O(nt/lg n)
O(nt/lg n)

(7:

Vign)



Text Reshuffling

recall how the text is “split” at a generalized wavelet tree node

[ ... B C D A ]
0100 1@1@ 11@1 0011




Text Reshuffling

recall how the text is “split” at a generalized wavelet tree node

[ ... B C D A ]
0100 1@1@ 11@1 0011

-> chars with bit pattern (v), are moved to the v-th child node



Text Reshuffling

recall how the text is “split” at a generalized wavelet tree node

[ ... B C D A ]
0100 11@1 0011

-> chars with bit pattern (v), are moved to the v-th child node

=> we need to simulate this on T after finishing a cluster of 7 levels

=> this is essentially stable counting sort,
and the WT node borders are already known!



Fast Levelwise Construction

steps for each cluster:

# Step Running time
K Cluster Extraction O(n)

2 | rpasses Ome/lgn) = Om) | (r:=+/1gn)
2a - Bit Extraction - O(nt/lg n)
'2b | - List Splitting - Ont/ig n)

| 3 Text Reshuffling O(n)

- for all [lg ¢ I/r clusters, the total construction time becomes O(n Ig /1)



Huffman-Shaped Wavelet Trees

wavelet tree
Char Code

B 0100
a 0101
e 00- -
1 0110
t 10--
\% 110-
W 111-



Huffman-Shaped Wavelet Trees

[ wavelet tree }

101000101100
aele ree wvtt
10101100 1100
al r WV
0101 10

B8

=> build wavelet tree according to Huffman codes

Char Code

3 010
010

e 00 -

1 011

r 011

t 10-

Y 110

W 111



Huffman-Shaped Wavelet Trees

[ wavelet tree }

101000101100 Char Code

010

aele ree wvtt a 910
10101100 1100 00-
1 011

al_r ;2 WV . 011
0101 i 10

B B v 110

)

=

> gaps break (consecutive) levelwise representation



Huffman-Shaped Wavelet Trees

[ wavelet tree }

000111101011 Char |Code

_ 000

[ wav_r } [ elettee } a 000
1010011 e 11-

1 100

r 011

t 101

a v 010
01 W 001

=> inverting canonical Huffman codes causes gaps to move to the right
(levelwise representation remains consecutive)



Fast Levelwise Construction
for Huffman-Shaped WTs

steps for each cluster:
Step Running time

Cluster Extraction O(n)

1a Code Length Computation  O(n)

T passes O(n7/ign) = Om) | (r .= \/gn)
23 - Bit Extraction - Omtign)
2b - List Filtering -
2 _ List Splitting - O(mt/lgn)

Text Reshuffling O(n)



Code Length Computation

—=> store the remaining code length in the current cluster of each character
to a word-packed list L

B C D A

1101 ©1-- | 1100 11-- | 1101 @--- | 0011 @---




Code Length Computation

—=> store the remaining code length in the current cluster of each character
to a word-packed list L

------ B C D A = = = = om &
1101 01-- | 1100 11-- 1101 9--- 0011 9---
------ 2 1 1 " == omom o
H/_/

Y ]
computer word (ex.: w = 16 bits)

-> we limit the lengths to 7 so they fit into 7 bits each



Code Length Computation

—=> store the remaining code length in the current cluster of each character
to a word-packed list L

------ B C D A = = = = om &
1101 01-- | 1100 11-- 1101 9--- 0011 9---
------ 2 1 1 " == omom o
H/_/

Y ]
computer word (ex.: w = 16 bits)

-> we limit the lengths to 7 so they fit into 7 bits each
=> left-to-right scan of T'in time O(n)



List Filtering

computer word (ex.: w = 16 bits)

AN
4 N




computer word (ex.: w = 16 bits)

AN

List Filtering

~

t=1

t=1

t=1

t=1

=> in pass ¢, do a parallel greater-than
comparison of lengths against ¢



List Filtering

computer word (ex.: w = 16 bits)

AN
4 N

...... 2 1 1 -
t=1 t=1 t=1 t=1

> => in pass ¢, do a parallel greater-than
comparison of lengths against ¢

1111 | 1111 | 0000 | 00O

=> the result mask M is used to filter codes ending on level az+t (pext)

=> the parallel comparison can be done in constant time per word



List Filtering

computer word (ex.: w = 16 bits)

AN

~

1

t=1

t=1

t=1

t=1

1111

1111

0000

0000

=> in pass ¢, do a parallel greater-than
comparison of lengths against ¢

=> the result mask M is used to filter codes ending on level az+t (pext)

=> the parallel comparison can be done in constant time per word

=> if any code ends after pass ¢, then all following codes also end
(thanks to the inverted canonical Huffman codes)



Fast Levelwise Construction
for Huffman-Shaped WTs

steps for each cluster:
Step Running time

Cluster Extraction O(n)

1a Code Length Computation  O(n)

T passes O(n7/ign) = Om) | (r .= \/gn)
23 - Bit Extraction - Omtign)
2b - List Filtering ——
2 _ List Splitting - O(mt/lgn)

Text Reshuffling O(n)



Name
Population Count

Parallel Bit Extract

Parallel Compare

Compress

Bit Shuffle

Permute

Useful CPU Instructions

Instruction
popcnt
pext
pcmp*
vpcmp*

vpcompress*

vpshuftbit*

pshufb
vperm

Brief
Count # of 1-bits in input word

Extract bits from word marked by mask;
align in most significant bits

Compare vector components;
output bit vector containing results

Extract vector components
(“pext for words”)

Gather bits from 64-bit subwords
(“advanced pext”)

Permute vector components

-> See Intel® Intrinsics Guide for details!

CPUID Flags
POPCNT

BMI2

MMX
AVX512*

AVX512*

AVX512_BITALG

SSE3

AVX512_ BITALG



Experimental Results

Throughput [MiB/s] of Huffman-shaped \Wavelet Tree construction

600 -

400

200 -

dblp.xml dna

B ext64
B shuf64
I shuf128
B shuf256
W shuf512
B pc

english pitches proteins sources cc.16gib dna.16gib wiki.16gib

CPU: Intel Core i9-11900KF with AVX-512, 3.5GHz (no turbo), 384 KiB L1 O https://github.com/jptrn/mawt



