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Video Script  

Introduction  

Hello, I am Patrick Dinklage from the technical university of Dortmund, Germany. I am going to talk 
about the bit-parallel construction of wavelet trees and compressed wavelet trees. This is joint 
work with Johannes Fischer, also from Dortmund, Florian Kurpicz from the Karlsruhe institute of 
technology, and – most importantly – Jan-Philipp Tarnowski. He now works at crownpeak, but he 
wrote his master's thesis with us and essentially, this work is a round-up of his practical results.

Wavelet Trees (Introduction)  

Let us begin by defining wavelet trees. We are given an input text, wavelet_tree  as an example, 

over an alphabet shown on the right hand side. To each character, we assign a binary code. In this 
case, the codes are simply increasing binary codes of the characters in lexicographic order. 
Because the alphabet has size 8, we use 3 bits to encode each character.

We now build a bit vector that is as long as the text, and assign to every position the most 
significant bit of the character's code. This labels the root node of the wavelet tree. We now split 
up the text into two child nodes: the left node represents characters whose most significant bit is 
0, and the right child represents the remaining characters whose most significant bit is 1.

We then proceed recursively, using the second most significant bit on the second level of the tree 
and so forth, until we have computed all  levels, where  is the size of the alphabet. On 
every level, we end up with exactly  bits.

Wavelet Trees (Bits Only)  

We only keep these bits and discard the texts. Because we only rearranged the bits of the 
characters in the order in which they occur in the text, the text can still be decoded.

Wavelet Trees (Levelwise)  

To save space, we also remove the pointers between nodes and their children, and concatenate 
the bit vectors on each level. The tree structure is still implicitly there. For example, the number of 
0-bits in the root node gives us the number of bits in the left child. By keeping track of node 
boundaries, and using constant-time rank queries on the bit vectors, we can still navigate the 
implicit tree without any pointers.

The wavelet tree thus fits into  bits and is an important ingredient for 
compressed text indexing, a popular example being the FM index. Its main application is arguably 
to answer integer rank and select queries, but it is also commonly used in geometric data 
structures.
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Wavelet Tree Construction  

For this reason, there has been quite some research on constructing the wavelet tree for a given 
text efficiently. Straightforward text book algorithms already achieve a construction time 

, matching the output size. The prefix counting algorithm works very well in practice. Not 
only can it be applied in all kinds of computational models – which we do in the referred 2022 
journal article – but it is also the fastest sequential algorithm in practice known thus far.

Independently from one another, in 2014, Babenko et al. and Munro et al. squeezed out a  
factor of the running time using word packing techniques. This was implemented by Kaneta in 
2018 using vector CPU instructions, with promising results. However, they only did this for 
commonplace 64-bit architectures.

For this work, we posed the following two questions:

First, does Kaneta'a algorithm scale with the register size? We investigated this for registers up to 
512 bits, powered by the AVX-512 instruction sets.

Second, can Kaneta's algorithm be adapted to construct also the Huffman-shaped, or compressed, 
wavelet tree that we will have a closer look at later in this video?

Fast Levelwise Construction (Introduction)  

To approach these questions, let us have a closer look at the fast construction algorithm. For a 
meaningful visualization, we consider a larger alphabet of size 256, meaning every character in the 
text is encoded using 8 bits. Let us look at a sequence in the text consisting of the letters B, C, D 
and A that have the given codes.

Our first step is to compute the generalized wavelet tree of arity , where  is a parameter that 
we set to 4 in this example. In the generalized tree, instead of assigning bits to each text position, 
we assign integers of  bits. Apart from this, the structure remains the same. Consequently, the 
multiary wavelet tree consists of only  levels.

Fast Levelwise Construction (Clusters)  

Observe how each level corresponds to  levels in the binary wavelet tree. We call these clusters in 
the following.

Our grand strategy is as follows. We expand each cluster to the corresponding  levels of the 
binary wavelet tree in linear time. If we can do that, then doing it for all  clusters takes 
time . By setting  to , which we will also need later, we match the desired total 
running time.

Fast Levelwise Construction (Steps)  

So we are allowed to spend at most  time for each cluster. Let us look at the steps that we 
undertake, which we will have a closer look at in the following.

The first step called Cluster Extraction consists of a preliminary scan over the text and takes linear 
time. The magic happens in step 2: we do  passes over the cluster, and each pass consists of the 
substeps Bit Extraction and List Splitting, taking time  each. Here, the choice of 

 comes in: over all  passes, the quotient  cancels out and we get linear time 
for the  passes. The last step, Text Reshuffling, again consists of a linear-time scan preparing the 
next cluster.
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Cluster Extraction  

Let us begin with the first step, Cluster Extraction. In this step, we extract from each character in the 
text the block of  bits relevant for the current cluster. In this example, we are in the first cluster, 
hence we extract the  most significant bits from each character, which are underlined. We store 
these in a packed list that we call .  is an array of computer words of  bits – 16 bits in this 
example – each containing -bit blocks of multiple characters.

Using standard word operations – namely ANDs, ORs and shifts – we can easily do all this in linear 
time, assuming the word RAM model.

Steps (after Cluster Extraction)  

To this end, we check off the Cluster Extraction step.

We now proceed to expanding the cluster to the  bit vectors in the binary wavelet tree, and we do 
this in  passes.

Word Packing  

Let us first look at the key ingredient for this, which is word packing. In the packed list , we pack 
 blocks into each word, where  is the word size, 16 bits in our case. Therefore,  consists of 

 words.

If we take constant time to process one word, then processing all of  takes time . With 
 being , we get exactly what we want. This is the key idea to the accelerated algorithm 

where the speedup comes from processing a word-packed list.

So, in each pass, we need to take care to only do constant work for every word in .

Bit Extraction  

Let us first look at Bit Extraction. From the -bit blocks of each character that we stored in the , 
we extract those bits that are relevant for the current level in the binary wavelet tree. Thanks to 
word packing, we can extract  bits at a time as follows.

We build a bitmask, let's call it , that we store in a computer word. In , we mark every bit that 
we want to extract from the word in  with a 1, and leave the remaining bits at zero. Let's say we 
are in pass number , then in , we set the -th bit for every block of  bits. The marked bits are 
exactly those that we need to construct level  of the binary wavelet tree, where  denotes 
the number of the cluster that we are in.

Using a specialized instruction, we can extract the bits marked by  and align them in the most 
significant bits of the output word in constant time. In theory, this can be done via lookup tables. 
In practice, we have the parallel bits extract instruction, short pext , or variants thereof depending 

on the register size.

Steps (after Bit Extraction)  

This was the most important part regarding the computation of the wavelet tree. Next, the List 
Splitting step prepares the next pass.
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List Splitting (Preface)  

First, why is this step needed? Recall how we split the text at a wavelet tree node: characters with a 
0-bit are moved to the left child, and those with a 1-bit are moved to the right child. This means 
that the order of the characters' occurrences in the text changes, and this must be reflected in our 
packed list  after every pass.

List Splitting (Borders)  

For this, observe how we can compute a node boundary, depicted here as the thick red line, 
simply by counting the number of 0-bits in the parent. By counting 0-bits during the Bit Extraction 
that we just looked at earlier, we can compute all node borders for the wavelet tree level on the 
fly.

We must take care here and make use of operations that can count the number of 0-bits in a word 
in constant time, otherwise we break our guarantees. This can be done using the commonplace 
popcount  instruction.

List Splitting (Right Child)  

Consider the bits that we just extracted from the example part of  during the previous Bit 
Extraction step. Let us expand each bit to  copies of that bit. With lookup tables, we can do this in 
constant time. The result is a mask  that marks precisely those blocks that we want to move to 
the right child, and we can again use pext  to extract them.

List Splitting (Left Child)  

To do the same for the left child, we simply flip the bits.

Doing pext  twice still only takes constant time, and so we are good regarding our guarantees.

Steps (after List Splitting)  

After doing Bit Extraction and List Splitting for all of the  passes, all of the work is done for the 
cluster.

However, we are left to do some preparation before proceeding to the next cluster.

Text Reshuffling  

The reason is similar to the reason for which we needed the List Splitting. Recall how the text is 
split, this time at a node in the generalized wavelet tree. Each character is assigned a block of  
bits. Conveniently, these are the binary representation of the number of the child node that the 
character is moved to. Before going to the next cluster, we need to rearrange the text accordingly.

This is very simple, however. In essence, we are doing a stable counting sort, and the node borders 
are already known, because we kept track of them during the Bit Extraction passes. Clearly, the 
rearrangement can be done in a left-to-right scan over the text.
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Steps (after Text Reshuffling)  

This concludes the improved algorithm. We showed that we need linear time to process a cluster, 
and since there are  clusters, with  set to , the total construction time becomes 

.

Now, let us tackle one of our initial questions: can this be done for Huffman-shaped Wavelet 
Trees?

Huffman-Shaped Wavelet Trees (Huffman Tree)  

As the name suggests, we look at the Huffman tree for our text, which looks like this. We now use 
the Huffman codes to construct the wavelet tree.

Huffman-Shaped Wavelet Trees  

When we do that, the wavelet tree consists of the inner nodes of the Huffman tree, hence the 
name Huffman-shaped wavelet tree. In this regard, this is an entropy-compressed version of the 
wavelet tree.

However, what happens if we try to put it in the levelwise representation?

Huffman-Shaped Wavelet Trees (Gaps)  

We see that there are gaps caused by missing nodes. These come from Huffman codes of more 
frequent characters being shorter than others. These are problematic, because the bit vectors are 
no longer consecutive, and that breaks our argument that the number of 0-bits in a node equals 
the number of bits in the left child. As a consequence, the navigation in the implicit tree using 
constant-time rank queries no longer works.

Luckily, there is a solution. From the Huffman table, we can compute so-called canonical Huffman 
codes. These are still optimal, but reshape the Huffman tree so that all gaps are moved to the left.

Huffman-Shaped Wavelet Trees (Inverted Canonical)  

By inverting the canonical Huffman codes, we move all the gaps to the right. That way, our 
requirements for navigation are met again.

In our construction algorithm, we still somehow need to account for codes that end in some pass 
processing a cluster.

Fast Huffman-Shaped Construction (Steps)  

To do this, we add two new steps.

First, when extracting the relevant -bit blocks for the cluster, we also compute code lengths, for 
which we spend linear time.

Second, before the List Splitting step, we insert a new step called List Filtering to each of the  
passes, allowing only constant time to be spent for each word in the packed list.
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Code Length Computation  

When preparing the cluster, additionally to the packed list , we also compute a packed list . For 
each character, it contains the remaining code length within the cluster. In our example here, let's 
say that the Huffman codes of B and C have 6 bits; and those of D  and A  only have 5 bits. Say we 

are in the second cluster of  bits, then we store 2, 2, 1, 1 in , because that's how many bits are 
left for the cluster.

We artificially limit the lengths to , simply so that each length is guaranteed to fit into  bits. With 
this, the entries of  are aligned with those in  containing the -bit blocks.

If we have constant-time access to the Huffman code table, we can clearly compute  in time 
.

List Filtering  

Now we are in pass number  processing the cluster. Some codes may end at the current level of 
the binary wavelet tree, , and we want to filter these out before going for the next pass.

We can find ending codes by doing a parallel greater-than comparison of the  entries in  against 
 copies of . These fit into a computer word, because  is at most . For the comparison, there are 

instructions that, in constant time, give us a mask  as a result, marking all entries where indeed, 
the value in  is greater than . As you may guess, we use  as an input for the pext  instruction 

in order to filter out the characters whose codes end at the current level, and we can do so in 
constant time.

If we find that any code ends in the current word, then we can conclude that all remaining codes 
also end for the remainder of the text. This is because the inverted canonical Huffman codes 
moved all gaps to the right.

It should be noted that  needs to be filtered and split just like , but this does not change the 
overall constant work for each word.

Steps (after Huffman)  

With the new steps, the algorithm is fit to construct the Huffman-shaped wavelet tree with no 
asymptotic penalties. This answers one of our main questions.

Useful CPU Instructions  

We implemented different versions of the construction algorithm. For this, we made use of a 
variety of useful CPU instructions based on the register size and what we found works best for a 
given task. This table gives only a brief overview; it would take a while to explain these in detail, 
but we already mentioned some of these earlier in the video. For a documentation, we refer to the 
Intel Intrinsics Guide. In our paper, we explain where and how we use these instructions.

Experimental Results  

Let us look at our experimental results.

We plot here the throughputs of different versions of our algorithm against pc , which stands for 

prefix counting, the fastest known sequential algorithm thus far. The different versions of our 
algorithm use different register sizes, as stated in their names. The algorithm ext64  uses the 

pext  instructions for basically everything as was shown in the video. The shuf  algorithms use 
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different instructions depending on the register size, but they compute the same intermediate 
results.

We let the algorithms compute the Huffman-shaped wavelet trees for different files from the Pizza 
& Chili corpus, as well as three additional, much larger input files. These are a web crawl, a long 
DNA sequence and a Wikipedia XML dump, respectively. Our hardware has an Intel Rocket Lake 
CPU that covers most of the different AVX-512 instruction sets, featuring register sizes up to 512 
bits.

The results tell us two things.

First, indeed, the algorithm scales very well as the register size increases. By using 512-bit 
registers, we always achieve the fastest wavelet tree construction.

Second, we outperform prefix counting, the fastest sequential algorithm known thus far, for every 
input. This holds even for ext64 , which uses commonplace 64-bit registers and can be used on 

almost any current hardware.

Our source code is written in C++ and is published on Github at the given URL under an open 
source license.

Thank you very much for your attention.
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