Bit-Parallel (Compressed) Wavelet Tree
Construction

Video Script

Introduction

Hello, | am Patrick Dinklage from the technical university of Dortmund, Germany. | am going to talk
about the bit-parallel construction of wavelet trees and compressed wavelet trees. This is joint
work with Johannes Fischer, also from Dortmund, Florian Kurpicz from the Karlsruhe institute of
technology, and - most importantly - Jan-Philipp Tarnowski. He now works at crownpeak, but he
wrote his master's thesis with us and essentially, this work is a round-up of his practical results.

Wavelet Trees (Introduction)

Let us begin by defining wavelet trees. We are given an input text, wavelet_tree as an example,
over an alphabet shown on the right hand side. To each character, we assign a binary code. In this
case, the codes are simply increasing binary codes of the characters in lexicographic order.
Because the alphabet has size 8, we use 3 bits to encode each character.

We now build a bit vector that is as long as the text, and assign to every position the most
significant bit of the character's code. This labels the root node of the wavelet tree. We now split
up the text into two child nodes: the left node represents characters whose most significant bit is
0, and the right child represents the remaining characters whose most significant bit is 1.

We then proceed recursively, using the second most significant bit on the second level of the tree
and so forth, until we have computed all [lg o] levels, where o is the size of the alphabet. On
every level, we end up with exactly n bits.

Wavelet Trees (Bits Only)

We only keep these bits and discard the texts. Because we only rearranged the bits of the
characters in the order in which they occur in the text, the text can still be decoded.

Wavelet Trees (Levelwise)

To save space, we also remove the pointers between nodes and their children, and concatenate
the bit vectors on each level. The tree structure is still implicitly there. For example, the number of
0-bits in the root node gives us the number of bits in the left child. By keeping track of node
boundaries, and using constant-time rank queries on the bit vectors, we can still navigate the
implicit tree without any pointers.

The wavelet tree thus fits into [lg o | (n + o(n)) bits and is an important ingredient for
compressed text indexing, a popular example being the FM index. Its main application is arguably
to answer integer rank and select queries, but it is also commonly used in geometric data
structures.

af://n0
af://n2
af://n3
af://n5
af://n9
af://n11

Wavelet Tree Construction

For this reason, there has been quite some research on constructing the wavelet tree for a given
text efficiently. Straightforward text book algorithms already achieve a construction time

O(nlg o), matching the output size. The prefix counting algorithm works very well in practice. Not
only can it be applied in all kinds of computational models - which we do in the referred 2022
journal article - but it is also the fastest sequential algorithm in practice known thus far.

Independently from one another, in 2014, Babenko et al. and Munro et al. squeezed out a 1/1lgn
factor of the running time using word packing techniques. This was implemented by Kaneta in
2018 using vector CPU instructions, with promising results. However, they only did this for
commonplace 64-bit architectures.

For this work, we posed the following two questions:

First, does Kaneta'a algorithm scale with the register size? We investigated this for registers up to
512 bits, powered by the AVX-512 instruction sets.

Second, can Kaneta's algorithm be adapted to construct also the Huffman-shaped, or compressed,
wavelet tree that we will have a closer look at later in this video?

Fast Levelwise Construction (Introduction)

To approach these questions, let us have a closer look at the fast construction algorithm. For a
meaningful visualization, we consider a larger alphabet of size 256, meaning every character in the
text is encoded using 8 bits. Let us look at a sequence in the text consisting of the letters B, C, D
and A that have the given codes.

Our first step is to compute the generalized wavelet tree of arity 27, where 7 is a parameter that
we set to 4 in this example. In the generalized tree, instead of assigning bits to each text position,
we assign integers of T bits. Apart from this, the structure remains the same. Consequently, the
multiary wavelet tree consists of only [lg | /T levels.

Fast Levelwise Construction (Clusters)

Observe how each level corresponds to 7 levels in the binary wavelet tree. We call these clusters in
the following.

Our grand strategy is as follows. We expand each cluster to the corresponding 7 levels of the
binary wavelet tree in linear time. If we can do that, then doing it for all [1g o] /T clusters takes
time O(nlgo /7). By setting T to /Ign, which we will also need later, we match the desired total
running time.

Fast Levelwise Construction (Steps)

So we are allowed to spend at most O(n) time for each cluster. Let us look at the steps that we
undertake, which we will have a closer look at in the following.

The first step called Cluster Extraction consists of a preliminary scan over the text and takes linear
time. The magic happens in step 2: we do T passes over the cluster, and each pass consists of the
substeps Bit Extraction and List Splitting, taking time O(n7/1gn) each. Here, the choice of

T = \/lg_n comes in: over all 7 passes, the quotient 7'2/ lg n cancels out and we get linear time
for the 7 passes. The last step, Text Reshuffling, again consists of a linear-time scan preparing the
next cluster.

af://n14
af://n20
af://n23
af://n26

Cluster Extraction

Let us begin with the first step, Cluster Extraction. In this step, we extract from each character in the
text the block of 7 bits relevant for the current cluster. In this example, we are in the first cluster,
hence we extract the 7 most significant bits from each character, which are underlined. We store
these in a packed list that we call S. S is an array of computer words of w bits - 16 bits in this
example - each containing 7-bit blocks of multiple characters.

Using standard word operations - namely ANDs, ORs and shifts - we can easily do all this in linear
time, assuming the word RAM model.

Steps (after Cluster Extraction)

To this end, we check off the Cluster Extraction step.

We now proceed to expanding the cluster to the 7 bit vectors in the binary wavelet tree, and we do
this in 7 passes.

Word Packing

Let us first look at the key ingredient for this, which is word packing. In the packed list S, we pack
w/T blocks into each word, where w is the word size, 16 bits in our case. Therefore, S consists of
nT/w words.

If we take constant time to process one word, then processing all of S takes time O(n7/w). With
w being (1g n), we get exactly what we want. This is the key idea to the accelerated algorithm
where the speedup comes from processing a word-packed list.

So, in each pass, we need to take care to only do constant work for every word in S.

Bit Extraction

Let us first look at Bit Extraction. From the 7-bit blocks of each character that we stored in the .S,
we extract those bits that are relevant for the current level in the binary wavelet tree. Thanks to
word packing, we can extract w/7 bits at a time as follows.

We build a bitmask, let's call it M, that we store in a computer word. In M, we mark every bit that
we want to extract from the word in S with a 1, and leave the remaining bits at zero. Let's say we
are in pass number t, then in M, we set the t-th bit for every block of 7 bits. The marked bits are
exactly those that we need to construct level aT + t of the binary wavelet tree, where o denotes
the number of the cluster that we are in.

Using a specialized instruction, we can extract the bits marked by M and align them in the most
significant bits of the output word in constant time. In theory, this can be done via lookup tables.
In practice, we have the parallel bits extract instruction, short pext, or variants thereof depending

on the register size.

Steps (after Bit Extraction)

This was the most important part regarding the computation of the wavelet tree. Next, the List
Splitting step prepares the next pass.

af://n29
af://n32
af://n35
af://n39
af://n43

List Splitting (Preface)

First, why is this step needed? Recall how we split the text at a wavelet tree node: characters with a
0-bit are moved to the left child, and those with a 1-bit are moved to the right child. This means
that the order of the characters' occurrences in the text changes, and this must be reflected in our
packed list S after every pass.

List Splitting (Borders)

For this, observe how we can compute a node boundary, depicted here as the thick red line,
simply by counting the number of 0-bits in the parent. By counting 0-bits during the Bit Extraction
that we just looked at earlier, we can compute all node borders for the wavelet tree level on the
fly.

We must take care here and make use of operations that can count the number of 0-bits in a word

in constant time, otherwise we break our guarantees. This can be done using the commonplace
popcount instruction.

List Splitting (Right Child)

Consider the bits that we just extracted from the example part of S during the previous Bit
Extraction step. Let us expand each bit to 7 copies of that bit. With lookup tables, we can do this in
constant time. The result is a mask M that marks precisely those blocks that we want to move to
the right child, and we can again use pext to extract them.

List Splitting (Left Child)

To do the same for the left child, we simply flip the bits.

Doing pext twice still only takes constant time, and so we are good regarding our guarantees.

Steps (after List Splitting)

After doing Bit Extraction and List Splitting for all of the 7 passes, all of the work is done for the
cluster.

However, we are left to do some preparation before proceeding to the next cluster.

Text Reshuffling

The reason is similar to the reason for which we needed the List Splitting. Recall how the text is
split, this time at a node in the generalized wavelet tree. Each character is assigned a block of 7
bits. Conveniently, these are the binary representation of the number of the child node that the
character is moved to. Before going to the next cluster, we need to rearrange the text accordingly.

This is very simple, however. In essence, we are doing a stable counting sort, and the node borders
are already known, because we kept track of them during the Bit Extraction passes. Clearly, the
rearrangement can be done in a left-to-right scan over the text.

af://n45
af://n47
af://n50
af://n52
af://n55
af://n58

Steps (after Text Reshuffling)

This concludes the improved algorithm. We showed that we need linear time to process a cluster,
and since there are [1g o | /T clusters, with T set to 4/1g n, the total construction time becomes

O(nlgo/+/1gn).
Now, let us tackle one of our initial questions: can this be done for Huffman-shaped Wavelet
Trees?

Huffman-Shaped Wavelet Trees (Huffman Tree)

As the name suggests, we look at the Huffman tree for our text, which looks like this. We now use
the Huffman codes to construct the wavelet tree.

Huffman-Shaped Wavelet Trees

When we do that, the wavelet tree consists of the inner nodes of the Huffman tree, hence the
name Huffman-shaped wavelet tree. In this regard, this is an entropy-compressed version of the
wavelet tree.

However, what happens if we try to put it in the levelwise representation?

Huffman-Shaped Wavelet Trees (Gaps)

We see that there are gaps caused by missing nodes. These come from Huffman codes of more
frequent characters being shorter than others. These are problematic, because the bit vectors are
no longer consecutive, and that breaks our argument that the number of 0-bits in a node equals
the number of bits in the left child. As a consequence, the navigation in the implicit tree using
constant-time rank queries no longer works.

Luckily, there is a solution. From the Huffman table, we can compute so-called canonical Huffman
codes. These are still optimal, but reshape the Huffman tree so that all gaps are moved to the left.

Huffman-Shaped Wavelet Trees (Inverted Canonical)

By inverting the canonical Huffman codes, we move all the gaps to the right. That way, our
requirements for navigation are met again.

In our construction algorithm, we still somehow need to account for codes that end in some pass
processing a cluster.

Fast Huffman-Shaped Construction (Steps)

To do this, we add two new steps.

First, when extracting the relevant 7-bit blocks for the cluster, we also compute code lengths, for
which we spend linear time.

Second, before the List Splitting step, we insert a new step called List Filtering to each of the T
passes, allowing only constant time to be spent for each word in the packed list.

af://n61
af://n64
af://n66
af://n69
af://n72
af://n75

Code Length Computation

When preparing the cluster, additionally to the packed list S, we also compute a packed list L. For
each character, it contains the remaining code length within the cluster. In our example here, let's
say that the Huffman codes of B and C have 6 bits; and those of D and A only have 5 bits. Say we

are in the second cluster of T bits, then we store 2, 2, 1, 1 in L, because that's how many bits are
left for the cluster.

We artificially limit the lengths to 7, simply so that each length is guaranteed to fit into 7 bits. With
this, the entries of L are aligned with those in S containing the 7-bit blocks.

If we have constant-time access to the Huffman code table, we can clearly compute L in time

O(n).
List Filtering

Now we are in pass number t processing the cluster. Some codes may end at the current level of
the binary wavelet tree, aT + t, and we want to filter these out before going for the next pass.

We can find ending codes by doing a parallel greater-than comparison of the 7 entries in L against
T copies of ¢t. These fit into a computer word, because ¢ is at most 7. For the comparison, there are
instructions that, in constant time, give us a mask M as a result, marking all entries where indeed,
the value in L is greater than t. As you may guess, we use M as an input for the pext instruction
in order to filter out the characters whose codes end at the current level, and we can do so in
constant time.

If we find that any code ends in the current word, then we can conclude that all remaining codes
also end for the remainder of the text. This is because the inverted canonical Huffman codes
moved all gaps to the right.

It should be noted that L needs to be filtered and split just like S, but this does not change the
overall constant work for each word.

Steps (after Huffman)

With the new steps, the algorithm is fit to construct the Huffman-shaped wavelet tree with no
asymptotic penalties. This answers one of our main questions.

Useful CPU Instructions

We implemented different versions of the construction algorithm. For this, we made use of a
variety of useful CPU instructions based on the register size and what we found works best for a
given task. This table gives only a brief overview; it would take a while to explain these in detail,
but we already mentioned some of these earlier in the video. For a documentation, we refer to the
Intel Intrinsics Guide. In our paper, we explain where and how we use these instructions.

Experimental Results

Let us look at our experimental results.

We plot here the throughputs of different versions of our algorithm against pc, which stands for
prefix counting, the fastest known sequential algorithm thus far. The different versions of our
algorithm use different register sizes, as stated in their names. The algorithm ext64 uses the
pext instructions for basically everything as was shown in the video. The shuf algorithms use

af://n79
af://n83
af://n88
af://n90
af://n92

different instructions depending on the register size, but they compute the same intermediate
results.

We let the algorithms compute the Huffman-shaped wavelet trees for different files from the Pizza
& Chili corpus, as well as three additional, much larger input files. These are a web crawl, a long
DNA sequence and a Wikipedia XML dump, respectively. Our hardware has an Intel Rocket Lake
CPU that covers most of the different AVX-512 instruction sets, featuring register sizes up to 512
bits.

The results tell us two things.

First, indeed, the algorithm scales very well as the register size increases. By using 512-bit
registers, we always achieve the fastest wavelet tree construction.

Second, we outperform prefix counting, the fastest sequential algorithm known thus far, for every
input. This holds even for ext64, which uses commonplace 64-bit registers and can be used on
almost any current hardware.

Our source code is written in C++ and is published on Github at the given URL under an open
source license.

Thank you very much for your attention.

	Bit-Parallel (Compressed) Wavelet Tree Construction
	Video Script
	Introduction
	Wavelet Trees (Introduction)
	Wavelet Trees (Bits Only)
	Wavelet Trees (Levelwise)
	Wavelet Tree Construction
	Fast Levelwise Construction (Introduction)
	Fast Levelwise Construction (Clusters)
	Fast Levelwise Construction (Steps)
	Cluster Extraction
	Steps (after Cluster Extraction)
	Word Packing
	Bit Extraction
	Steps (after Bit Extraction)
	List Splitting (Preface)
	List Splitting (Borders)
	List Splitting (Right Child)
	List Splitting (Left Child)
	Steps (after List Splitting)
	Text Reshuffling
	Steps (after Text Reshuffling)
	Huffman-Shaped Wavelet Trees (Huffman Tree)
	Huffman-Shaped Wavelet Trees
	Huffman-Shaped Wavelet Trees (Gaps)
	Huffman-Shaped Wavelet Trees (Inverted Canonical)
	Fast Huffman-Shaped Construction (Steps)
	Code Length Computation
	List Filtering
	Steps (after Huffman)
	Useful CPU Instructions
	Experimental Results

